既有建筑砌体抗压强度的贝叶斯推断

来源 :土木建筑与环境工程 | 被引量 : 0次 | 上传用户:dama5011
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  摘 要:基于贝叶斯理论推断既有建筑砌体抗压强度,将现场原位轴压法测试的砌体抗压强度作为先验信息,同时利用块体和砂浆回弹法检测强度的推定值,按照《砌体结构设计规范》(GB 50003—2011)中的砌体抗压强度计算公式构造似然函数,联合先验信息和似然函数,推导既有建筑砌体抗压强度的后验分布,研究结果表明:通过后验分布可得到综合各种信息的既有建筑砌体抗压强度的合理推断值。且已建立的后验分布可作为下一次抗压强度贝叶斯推断的先验信息,可实现既有建筑砌体抗压强度值的动态长期观测,为砌体结构的定期维修和加固提供依据,为砌体结构的可持续发展提供基础。
  关键词:既有建筑;砌体抗压强度;贝叶斯推断;先验信息;似然函数;后验分布
  中图分类号:TU362 文献标志码:A 文章编号:2096-6717(2021)06-0082-06
  Abstract: Based on Bayesian theory, the compressive strength of existing masonry structure was deduced.The compressive strength of masonry tested by the method of axial compression in situ was taken as a prior information. At the same time, the estimated value of strength of block and mortar detected by the rebound method was used to construct the likelihood function, according to the calculation formula of compressive strength of masonry in the "Code for Design of Masonry Structures" (GB 50003-2011).Combining the prior information and the likelihood function, the posterior distribution of compressive strength of existing building masonry was derived.The research results show that the reasonable inferred values of compressive strength of existing masonry structures containing various information can be obtained through the posterior distribution. Moreover, the established posterior distribution can be used as the prior information for subsequent compressive strength Bayesian reference, which can realize the dynamic long-term observation of compressive strength of existing masonry structure.Furthermore,it provides a basis for the regular maintenance and reinforcement of existing masonry structure, and provides a foundation for the sustainable development of existing masonry structure.
  Keywords: existing structure; compressive strength of masonry; Bayesian inference; prior information;likelihood function; posterior distribution
  “可持續发展”越来越成为各类工程结构发展的主题,根据《工程结构可靠性设计统一标准》(GB 50153—2008),《建筑结构可靠性设计统一标准》(GB 50068—2018)修订中增加了“使结构符合可持续发展的要求”。对于建筑结构而言,可持续发展在社会方面的内容就是要保证使用者的健康和舒适,保护建筑工程的文化价值[1]。
  砌体结构是一种重要的建筑结构形式,在中国有大量的既有砌体结构,包括大量的砌体古建筑,古建筑作为凝固的艺术,承载着大量而丰富的历史信息,保护这些既有砌体结构具有重要的意义。而这些既有砌体结构在不同程度上需要定期的维修和加固,维修加固通常需要通过调查检测、结构试验获得相关强度数据来进行分析,砌体的抗压强度就是一个非常重要的强度指标。对于既有建筑砌体的抗压强度,目前主要有两种方法进行检测:直接法和间接法。直接法是在现场直接检测砌体的抗压强度,原位轴压法属于直接法;间接法是通过检测砌筑块材和砂浆的强度来计算砌体的强度[2]。由于样本离散性、量测误差等不确定因素的影响,这两种方法推定的强度值在某些情况下存在差异。同时,对于既有砌体结构而言,不管是哪种方法,都受到现场条件的限制,可获得的砌体抗压强度实测样本有限,特别是对于具有历史保护价值的砌体结构,一砖一瓦都弥足珍贵,应该尽可能地利用已有信息,对强度进行合理推断。
  贝叶斯方法正是一种可以充分利用各种信息的有效方法,利用贝叶斯理论可赋予先验信息和似然函数中的样本信息合理的权重,使得推断结果更为全面合理。更为重要的是基于贝叶斯理论的强度推断结果具有可持续性,已有的后验分布可以作为下一次强度推断的先验信息,作为下一次进行贝叶斯推断的基础和出发点,对于需要保护的砌体古建筑而言,可实现动态的长期观测,具有非常重要的工程价值和社会意义。目前,贝叶斯统计理论在英美等西方发达国家已经称为当前两大统计学派之一,并在实践中获得了广泛应用。近年来,贝叶斯理论也被学者们应用到岩土工程[3-5]和结构工程[6-10]等领域进行相关参数的不确定性分析,但在砌体结构中进行强度推断方面的研究不多,彭斌,汪澜涯[11-12]等基于贝叶斯方法对砌体抗压强度进行过推定,但是实现过程较为复杂。笔者用简单可行且力学概念清晰的方法实现既有建筑砌体抗压强度的贝叶斯推断。   1 贝叶斯定理
  贝叶斯学派的最基本的观点是:任一个未知量θ都可以看作一个随机变量,应该用一个概率分布去描述θ的未知状况。这个概率分布是在抽样前就有的有关θ的先验信息的概率陈述,被称为先验分布。
  贝叶斯方法就是将关于未知参数的先验信息与样本信息进行综合,再根据贝叶斯定理,得出后验信息去推断未知参数。连续型随机变量的贝叶斯公式可用式(1)表示[13]。
  式中:π(θ|x)为后验密度函数,对应的分布称为后验分布,它综合了有关参数θ的先验信息和抽样信息。π(θ)是参数θ的先验密度函数,对应的分布为先验分布。L(x|θ)为似然函数,一般来说,先验分布反映了人们在抽样前对参数θ的认识,后验分布反映了人们在抽样后对参数θ的认识,它实际上是通过抽样信息对参数θ的先验信息进行调整,因此,基于后验分布对参数θ进行统计推断更加有效,也更加合理。也可以把式(1)写成式(2)。
  其中:∝表示“正比于”,两边只差一个不依赖于θ的常数因子,式(2)右端虽不是正常的密度函数,但它是后验分布π(θ|x)的核,在某些时候可以用来简化后验分布的计算。
  2 砌体抗压强度的贝叶斯推断
  2.1 似然函数
  《建筑结构可靠性设计统一标准》(GB 50068—2018)明确规定材料强度的概率分布宜采用正态分布或对数正态分布,因此,砌体抗压强度、块体强度和砂浆强度概率模型均用对数正态分布表示。因为砌体抗压强度与块体强度和砂浆强度有关,若有块体强度和砂浆强度的观测值,可利用砌体抗压强度与二者的关系建立砌体抗压强度的似然函数。
  《砌体结构设计规范》(GB 50003—2011)[14]采用式(3)来计算砌体抗压强度平均值。
  式中:fm为砌体抗压强度平均值;f1为块体的强度等级值或平均值;f2为砂浆抗压强度平均值;α为与块体高度有关的参数;k1为反映块体种类的参数;k2为采用低强度等级砂浆时的修正系数。α、k1和k2的取值规定见《砌体结构设计规范》(GB 50003—2011)。为构造砌体抗压强度平均值fm的似然函数,对式(3)两边取对数[12],得到式(4)。
  2.2 后验分布
  以上砌体抗压强度样本的似然函数为正态分布,为了便于推导强度均值的后验分布,利用对数正态分布与正态分布的关系进行简单的变换,用另一正态分布N(μ,τ2)作为均值θ的先验分布,利用先验信息可确定μ和τ2的取值。
  先验分布和似然函数都确定后,即可由式(2)得出砌体抗压强度均值的后验分布,如式(9)所示。
  从μ1的计算公式可以看出,后验均值是在先验均值与似然函数中的样本均值间采取折中方案,有了砌体抗压强度均值的后验分布后,即可综合先验信息和样本信息对强度均值进行更好的推断,由上式可知,要定量计算出后验分布,还需要对块体和砂浆的概率密度模型进行推定。
  3 块体和砂浆强度概率密度模型推定
  3.1 块体强度f1的概率密度模型
  3.1.1 参数的最大似然估计
  依据《建筑结构可靠性设计统一标准》(GB 50068—2018)的规定,取块体强度f1服从对数正态分布,则F1=ln f1服从正态分布,记为F1~N(θF1,σ2F1),可用式(10)表示。
  3.1.2 参数估计值的偏差分析
  求得参数的估计值以后,利用无偏性准则来评价估计量的好坏。估计量的数学期望等于被估计参数的真实值,则称此估计量为被估计参数的无偏估计,即具有无偏性。下面即对块体强度分布的均值和方差的极大似然估计值的偏差进行分析。
  由式(15)可知,F1ML是均值的无偏估计量。
  由式(16)可知,最大似然估计值σ^2F1ML是方差的有偏估计量,故要推导另一估计值。因为有式(17)成立,故样本方差可以用来作为总体方差的估计值。
  故块体强度分布模型F1~N(θF1,σ2F1)中的均值和方差的估计值为
  只要有一组块体强度的观测值,就可以按式(18)的均值和方差的估计值确定其分布。
  3.2 砂浆强度f2的概率密度模型
  砂浆强度f2的概率密度模型推导方法同块体强度f1,即对F2~N(θF2,σ2F2),有式(19)成立。
  块体和砂浆强度的概率模型确定以后,按式(8)可确定抗压强度的似然函数,按现场原位轴压法测试的砌体抗压强度确定先验分布,则对应的后验分布即可按式(9)确定。后验分布确定后既可以得到砌体抗压强度的贝叶斯推断值,下面用一具体算例说明整个实现过程。
  4 算例
  以国网湖南省电力有限公司东塘二办公楼结构现场检测结果对砌体抗压强度进行贝叶斯推断。根据《砌体工程现场检测技术标准》(GB/T 50315—2011)[15]的规定采用回弹法检测砖与砂浆抗压强度,现场检测如图1所示,采用现场原位轴压法检测砌体抗压强度,现场检测如图2所示。
  4.1 砌体抗压强度平均值
  将整幢建筑的承重墙体划分为1个检测单元,从1层到6层的墙体共选择10个测区,每个测区中选择10个测位进行砖的回弹测试,将回弹测试值按《砌体结构工程现场检测技术标准》(GB/T 50315—2011)中的數据分析要求换算为砖抗压强度平均值,见表1中f1,在砖块回弹测试的相同测区内同样选择10个测位进行砂浆的回弹测试,并根据回弹值和碳化深度值按《砌体结构工程现场检测技术标准》(GB/T 50315—2011)中的数据分析要求换算为砂浆抗压强度平均值,见表1中f2,在砖和砂浆强度的10个测区中选择3个部位将承重墙体开槽后进行原位轴压法测试,并将槽间砌体抗压强度换算为标准砌体抗压强度,见表1中fm。
  由表1中数据及式(18)可得F1~N(θF1,σ2F1)=1.85,   2F1=0.016,由表1中數据及式(19)可得
  F2~N(θF2,σ2F2)=0.21,2F2=0.002 7,将现场原位轴压法检测结果作为先验信息,可得μ=0.97,τ2=0.000 2,即抗压强度均值的先验分布为N(μ,τ2)~N(0.97,0.000 2)。
  最后,联合先验分布和似然函数,由式(9)可得,抗压强度均值的后验分布为N(μ1,τ21)~N(0.95,0.000 16),将抗压强度均值的先验分布、似然函数和后验分布绘制在图3中,由图3可知,后验分布是先验分布与似然函数的折中。
  利用对数正态分布与正态分布的转换关系可知,通过抗压强度均值的后验分布可得砌体抗压强度平均值的贝叶斯推断值为2.58 MPa,而由检测结果可知,现场原位测试的砌体抗压强度平均值为2.64 MPa,将表1中的块体强度平均值f1和砂浆强度平均值f2代入式(3)可计算出砌体抗压强度平均值为2.42 MPa。可见,利用贝叶斯理论推断的砌体抗压强度平均值介于现场原位测试结果和利用块体和砂浆强度检测值计算的结果之间,能够将两种方法的信息按照一定的权重比进行综合。
  4.2 砌体抗压强度推定值
  按《砌体结构工程现场检测技术标准》(GB/T 50315—2011)中关于强度推定的要求,计算砌体抗压强度标准值的推定值,先按公式(15.0.3-1)~ (15.0.3-3)求得每一检测单元的砌体抗压强度平均值x-、强度标准差s和变异系数δ,然后结合测区数是否大于等于6个来选用公式(15.0.8-1)或(15.0.8-3)进行推定。
  原位轴压法测得的砌体抗压强度平均值为2.64 MPa,但原位轴压法的测区为3个,小于6,故按式(15.0.8-3)确定砌体抗压强度标准值的推定值,即取测区砌体抗压强度的最小值2.61 MPa。
  通过块体和砂浆的强度得到的砌体抗压强度平均值x-=2.42 MPa,同一检测单元按10个测区计算的标准差s=0.23,变异系数δ=0.09,又测区大于6,故按式(15.0.8-1)确定砌体抗压强度标准值的推定值为2.01 MPa。
  通过贝叶斯推断的砌体抗压强度的平均值x-=2.58 MPa,其中的2.58为将抗压强度均值的后验分布N(μ1,τ21)~N(0.95,0.000 16)中的均值进行对数正态分布与正态分布的转换而得,同理,可以利用后验分布中的均值μ1=0.95 MPa,标准差s=0.000 16=0.013,变异系数δ=0.013,联合式(15.0.3-1)~ (15.0.3-3)及(15.0.8-1)计算得出贝叶斯推断的砌体抗压强度标准值的推定值的对数值为0.92 MPa,转换后得贝叶斯推定的砌体抗压强度标准值为2.51 MPa。
  由此可知,对于砌体抗压强度标准值的推定值,原位轴压法测试值推定的为2.61 MPa,利用块体和砂浆的回弹检测值推定得到的为2.01 MPa,贝叶斯方法计算得到的为2.51 MPa,仍然介于两者之间,进一步说明利用贝叶斯方法可以将直接法和间接法获得的砌体强度信息相结合,从而降低推定结果的不确定性。
  5 结论
  1)既有建筑砌体抗压强度的贝叶斯推断可以将现场原位测试的砌体抗压强度值和通过块体和砂浆强度推定的计算值以一定的权重相结合,若似然函数中样本均值的方差偏小,则其在后验均值中的权重就大,反之,所占的权重就小,即贝叶斯推断的后验分布是在先验分布与似然函数间采取的折中方案,使得最后的结果充分考虑各种信息,更为全面合理。
  2)既有砌体结构抗压强度的贝叶斯推断结果具有可持续性,已有的后验分布可以作为下一次强度推断的先验信息,在实际工程中可实现强度的动态长期观测。
  3)既有砌体结构抗压强度的贝叶斯推断中的思路和方法可推广到其他强度指标,对检测、结构试验获得的相关强度数据进行分析,作为砌体结构定期维修和加固的依据,降低推定结果的不确定性,有利于客观分析和决策,为最大程度地实现砌体结构的可持续发展提供基础。
  参考文献:
  [1]建筑结构可靠性设计统一标准: GB 50068—2018[S].北京: 中国建筑工业出版社, 2018.
  Unified standard for reliability design of building structures:GB 50068-2018[S]. Beijing: China Architecture & Building Press, 2018. (in Chinese)
  [2]既有建筑物结构检测与评定标准: DG/TJ 08-804-2005[S]. 上海: 上海市建设和交通委员会, 2005.
  Standard of structural inspection and assessment for existing buildings: DG/TJ 08-804-2005[S]. Shanghai: Construction and Transportation Commission of Shanghai, 2005. (in Chinese)
  [3]FENG X D, JIMENEZ R. Estimation of deformation modulus of rock masses based on Bayesian model selection and Bayesian updating approach[J]. Engineering Geology, 2015, 199: 19-27.
  [4]LIU H X, QI X H. Random field characterization of uniaxial compressive strength and elastic modulus for intact rocks[J]. Geoscience Frontiers, 2018, 9(6): 1609-1618.   [5]CONTRERAS L F, BROWN E T, RUEST M. Bayesian data analysis to quantify the uncertainty of intact rock strength[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2018, 10(1): 11-31.
  [6]IGUSA T, BUONOPANE S G, ELLINGWOOD B R. Bayesian analysis of uncertainty for structural engineering applications[J]. Structural Safety, 2002, 24(2/3/4): 165-186.
  [7]MA Y F, ZHANG J R, WANG L, et al. Probabilistic prediction with Bayesian updating for strength degradation of RC bridge beams[J]. Structural Safety, 2013, 44: 102-109.
  [8]LIU P, AU S K. Bayesian parameter identification of hysteretic behavior of composite walls[J]. Probabilistic Engineering Mechanics, 2013, 34: 101-109.
  [9]BARTOLI G, BETTI M, FACCHINI L, et al. Bayesian model updating of historic masonry towers through dynamic experimental data[J]. Procedia Engineering, 2017, 199: 1258-1263.
  [10]姚繼涛. 现有结构材料强度的统计推断[J]. 西安建筑科技大学学报(自然科学版), 2003, 35(4): 307-311.
  YAO J T. Statistical inference of material strength of existing structures[J]. Journal of Xian University of Architecture & Technology, 2003, 35(4): 307-311.(in Chinese)
  [11]彭斌, 汪澜涯, 李翔, 等. 基于贝叶斯方法的历史建筑砌体抗压强度推定[J]. 建筑材料学报, 2015, 18(5): 778-783.
  PENG B, WANG L Y, LI X, et al. Inference for compressive strength of masonry in historical buildings based on Bayesian method[J]. Journal of Building Materials, 2015, 18(5): 778-783.(in Chinese)
  [12]汪澜涯. 既有砌体结构安全性分析与预测[D]. 上海: 上海理工大学, 2016.
  WANG L Y.Safety analysis and prediction of existing masonry structure[D]. Shanghai: University of Shanghai for Science & Technology, 2016. (in Chinese)
  [13]茆诗松, 汤银才. 贝叶斯统计[M]. 2版. 北京: 中国统计出版社, 2012.
  MAO S S, TANG Y C. Bayesian statistics[M]. 2nd ed. Beijing: China Statistics Press, 2012.
  [14]砌体结构设计规范: GB 50003—2011[S]北京: 中国建筑工业出版社, 2011.
  Code for design of masonry structures: GB 50003-2011[S]. Beijing: China Architecture & Building Press, 2011. (in Chinese)
  [15]砌体工程现场检测技术标准: GB/T 50315—2011[S]. 北京: 中国建筑工业出版社, 2011.
  Technical standard for site testing of masonry engineering: GB/T 50315-2011[S]. Beijing: China Architecture & Building Press, 2011. (in Chinese)
  (编辑 胡玲)
其他文献
摘 要:基于虚土桩模型,研究了桩端应力扩散效应对单桩沉降的影响。结合虚土桩模型和Boussinesq解,提出考虑桩端应力泡形扩散的应力泡形虚土桩模型来考虑桩端土对桩的支承作用;利用荷载传递法,对桩周土采用双折线模型,推导得到层状地基中考虑桩端应力泡性扩散的单桩沉降解析解;讨论了弹性极限位移、弹性抗剪切刚度系数、附加应力值等参数对单桩沉降的影响;结合工程实测数据,将该方法与现有理论解进行对比,验证了
为了提高复杂地表区“两宽一高”三维地震勘探施工效率、降低生产成本、以技术经济一体化施工实现油气勘探提质增效,以地震采集施工作业方案中涉及的关键参数为研究对象,利用近年来四川盆地多个大中型三维地震资料,进行了关键施工参数与采集效率以及直接成本的综合关系研究。研究结果表明:①排列模板布设是采集作业方案设计中的关键和核心,直接决定了采集效率和生产资源投入;②采集作业方案中的关键参数为有效采集工期、采集日效、采集设备投入量和采集滚动方式,施工方应结合项目实际和经验公式,综合优化关键参数,从而科学设计采集作业方案;
摘 要:盾构掌子面稳定性的不确定性分析多侧重于土性参数的变异性,较少考虑支护压力的变异性。基于K-L级数分解法建立描述土性参数空间变异性的三维随机场,研究土性参数变异性对掌子面失稳模式、极限支护应力的影响规律,讨论支护压力的均值与变异系数对失效概率的影响,并据此确定支护压力均值特征值。结果表明:黏性土黏聚力与内摩擦角的空间变异性对掌子面稳定性有重要影响,其中内摩擦角的影响更甚;掌子面失稳模式与随机
高桩码头墩台结构施工需要兼顾结构尺寸、稳定性等基础层面的要求,并考虑到现场环境对施工的干扰,必须合理应用施工技术。鉴于此,文章从分层设计、模板支撑系统的设计及施工、钢筋安装、施工缝的处理等多个方面切入,提出一些技术要点,系统性研究高桩码头墩台结构的施工技术,以供参考。
摘 要:随着铬工业化利用的发展,铬污染问题日益严峻。基于金属网易分离的优势,采用化学沉积法制备Al/Cu双金属网材料,实现对Cr(Ⅵ)的快速去除,并通过静态试验系统优化了反应温度、溶液pH值、Al/Cu双金属网投加量等条件。对Al/Cu双金属网材料进行表征,发现Cu涂覆呈现疏松的珊瑚状颗粒原位生长在铝网表面;Cr(Ⅵ)去除的静态试验表明,在较大的pH值(3.0~9.0)范围内Al/Cu双金属网对C
摘 要:有机磷酸酯(OPEs)阻燃剂与重金属铬是电子垃圾拆解区环境中常见的复合污染物。研究300 W汞灯(λ = 365 nm)照射下Fe(Ⅲ)在水溶液中同时光催化氧化磷酸三(2-氯乙基)酯(TCEP)和还原Cr(Ⅵ)的性能,考察Fe(Ⅲ)、Cr(Ⅵ)和TCEP初始浓度的影响,探讨UV/Fe(Ⅲ)体系中Fe(Ⅲ)/Fe(Ⅱ)氧化还原循环再生性,并验证UV/Fe(Ⅲ)对其他OPEs降解的适用性。结果
为了解决辫状河心滩规模难以刻画的问题,以鄂尔多斯盆地北缘二叠系下石盒子组盒1段辫状河砂体为研究对象,结合现今河流沉积特征,分析了冲积扇、冲积平原不同沉积相带中辫状河砂体的发育特征;利用地质统计学方法,针对不同沉积相带的辫状河心滩规模参数进行相关性分析,建立了地貌坡度与心滩长宽比等的定量关系;对目标区直井、水平井实钻心滩参数进行统计,经过压实校正,对定量关系进行验证及修正,实现了不同厚度、不同古地貌坡度下心滩的定量计算与描述。研究结果表明:①盒1段北部以冲积扇为主,南部发育冲积平原辫状河,中间过渡带则兼具有
2020年,受极端自然灾害频发、全球新冠肺炎疫情爆发等多重不利因素叠加的影响,全球经济陷入了严重的衰退,能源行业受到了重创。中国油气生产企业紧紧抓住中国经济在全球率先实现正增长和能源行业低碳转型发展的有利机遇,坚持经营上精打细算、生产上精耕细作、管理上精雕细刻、技术上精益求精,国内天然气资源勘探开发成果丰硕。为了确保今后一个时期中国油气行业高质量、可持续发展,梳理和分析了2020年中国天然气勘探开发成果,结合中国天然气资源潜力,展望了2021年中国天然气发展形势。研究结果表明:①天然气勘探不断取得新突破,
气田开发过程中的产能评价是衡量气田开发效果的重要指标。为了充分认识气田开发过程中水平井生产能力、建立合理的产能评价方法,以鄂尔多斯盆地大牛地气田为研究对象,对工区范围内9口水平井的地质、开发数据建立样本库,重点从地质认识和压裂施工两个环节分析了水平井产能影响的主控因素,筛选了气层垂深、水平段长、砂岩长度、砂岩钻遇率、显示长度、显示钻遇率、平均全烃含量、最大全烃含量、孔隙度、渗透率、含气饱和度、气层厚度、压裂段数、总液量、总加砂量、单段液量、单段加砂量等17项因素建立产能评价表征模型,应用灰色关联算法对各影
摘 要:剩余污泥的水解破壁是其厌氧消化的限速步骤。投加Fe(Ⅲ)氧化物可富集具有异化铁还原功能的Fe(Ⅲ)还原菌,强化复杂有机物的分解,是一种促进剩余污泥水解破壁的有效手段。然而,在实际工程中,连续投加Fe(Ⅲ)氧化物不经济。亚硝酸鹽作为反硝化中间产物,被报道能促进污泥水解破壁,同时可将污泥中的Fe(Ⅱ)化学氧化为Fe(Ⅲ),但对于亚硝酸盐引发的Fe(Ⅱ)氧化和Fe(Ⅲ)还原过程对污泥水解破壁及后