论文部分内容阅读
为了克服偏标记学习中监督信息缺失的问题,根据偏标记样本的性质设计决策树生成过程中的样本分裂规则,改造决策树的建立算法.文中算法首先对样本进行bootstrap采样并建立多棵决策树,然后对各决策树结果进行投票得出最终预测结果.在人工数据集和真实数据集上的实验表明,文中算法具有较好的分类性能.