论文部分内容阅读
针对采用回声状态网络预测多元混沌时间序列时存在的病态解问题,本文建立了因子回声状态网络模型,通过因子分析(Factor analysis, FA)方法提取高维储备池状态矩阵的公因子,去除冗余和噪声成分。利用降维后的因子变量与期望输出之间的线性回归关系,求解网络未知参数。基于Lorenz 序列和大连月平均气温–降雨量的仿真实验验证了本文所提模型的有效性。