论文部分内容阅读
针对一种流行的用户轨迹隐私保护方法——Silent Cascade,提出一种新的轨迹隐私度量方法.该度量方法将用户运动轨迹用带权无向图描述,并从信息熵的角度计算用户的轨迹隐私水平.已有文献指出,当攻击者拥有新的背景知识时,任何一种隐私保护方法都会受到隐私威胁.因此,将攻击者的背景知识分级融入到度量方法中,隐私度量的结果由对背景知识的假设和相应的轨迹隐私水平值组成,并提出(KuL(Ki+,Ki-),KL(Ki+,Ki-))联系规则的方法来描述对背景知识的假设.模拟实验结果表明,此度量方法为移动用户和轨迹隐私