论文部分内容阅读
针对深度学习算法在多目标跟踪中的实时性问题,提出一种基于MobileNet的多目标跟踪算法.借助于MobileNet深度可分离卷积能够对深度网络模型进行压缩的原理,将YOLOv3主干网络替换为MobileNet,通过将标准卷积分解为深度卷积和逐点卷积,保留多尺度预测部分,以有效减少参数量.对于检测得到的边框信息,利用Deep-SORT算法进行跟踪.实验结果表明,所提出方法在跟踪效果基本不变的情况下可提升处理速度近50%.