论文部分内容阅读
差分进化算法是一种基于种群差异的优化算法,主要应用于解决连续空间的优化问题。目前,研究人员主要在算法的改进和应用方面研究差分进化算法,很少从理论角度对其进行研究。为了分析差分进化算法的收敛性,定义优化个体、种群的状态转移,并提出种群的最优状态集合。根据差分进化算法的操作算子计算出个体的状态迁移概率,并证明种群状态序列是有限齐次马尔可夫链,进而建立差分进化算法的马尔可夫链模型;最后,证明差分进化算法无法保证全局收敛。理论研究结果表明,适当保证种群的多样性能够提高差分进化算法的性能。