论文部分内容阅读
针对基于粒子滤波(particle filter,PF)的目标跟踪算法易产生样本贫化的问题,提出一种利用和声搜索算法(harmony search,HS)优化重采样粒子滤波的视频目标跟踪方案。采用高斯混合模型(Gaussian mixture model,GMM)对背景建模,在目标视频帧中执行粒子滤波,通过直方图匹配法为每个粒子分配权重;利用和声搜索算法生成新的粒子,通过放弃一部分粒子来提高样本的随机性;对粒子进行重要性重采样,根据粒子权重估计目标状态。在BoBoT和DTU数据集上的实验结果表明,所