基于多元文化下的勾股定理分析

来源 :少年科普报(科教论坛) | 被引量 : 0次 | 上传用户:feifei1988000
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  摘要:勾股定理属于数学历史发展阶段非常重要的定理之一,勾股定理的起源与表述以及应用均在各不相同的程度上,直观地反映出中外数学关于思维、表达以及目标等层面的区别和差异。基于此,本文对基于多元文化下的勾股定理进行分析探讨。
  关键词:多元文化;勾股定理;分析
  中图分类号:G4 文献标识码:A 文章编号:(2020)-061
  
  前言
  勾股定理属于直角三角形的基本性质,将三角形存在直角“形”的明显特点,转变成三边之间“数”的关系,使部分直角三角形有关的计算问题可以得到有效解决。同时,勾股定理作为数形结合的重要体现,成为初中数学教学的关键内容。勾股定理蕴藏多元的文化底蕴,通过数学故事以及数学名题,对数学家锲而不舍、探索追求的精神以及数学美等做出充分体会和感受。此外,教材重要也表明,数学并非是数学与符号的计算以及证明,而是人们智慧的伟大结晶,是千古传承的重要文化。
  一、东方勾股定理:商高定理
  关于勾股定理发现以及应用,中国最早的数学著作,即《周髀算经》曾清晰的记录,记载了周公曾向商高进行讨教,怎样可以得到天地数据方面的问题,昔者周公问于商高曰:窃闻乎大夫善数也,请问古者包牺立周天历度。夫天不可阶而升,地不可得尺寸而度,请问数安从出?商高曰:数之法出于圆方,圆出于方,方出于矩,……以为勾广三,股修四,径隅五,既方之……表明的意思主要是,从前周公向商高进行询问,我听说对于验算较为擅长,所以请问古代时候包牺氏如如何对天空做出具体的度量,天是否可以通过台阶上去,地是否可以通过尺寸做出测量,请问使如何形成将具体的角度数据的?商高则回答:沿着对角线对长方形做出折叠,便能够形成长度是3的短边,即勾,长度为4的长边,即股,以及长度为5的斜边,即弦,获得如此的直角三角形比率。因此,人们也将其称作著名的“商高定理”。商高所阐述的定理即:针对于相应的三角形,如果勾长度是3,股长度是4,弦长度势必是5,这也是数学中学生所熟知的勾三股四弦五。基于我国古代数学家有关于勾股定理的研究,该定理也被称为称作“商高定理”,即现在的勾股定理,这也成为勾股定理位于我国所记载的时间最早的研究[1]。
  如上图所示,具体证明过程:图中全部直角三角形面积均相同,即12ab
  中间部分正方形面积(b-a)2
  赵爽创作的勾股圆方图,基于弦为边长获得正方形ABCD,主要通过直角三角形与正方形共同构成。
  因此,便可以获得具体的算式:c2=4×(12ab)+(b-a)2
  =2ab+b2-2ab+a2
  =a2+b2
  以上证明过程和方法不但十分简单,同样较为直观,反映出我国古代数学家的超高思想以及对于数学的探索追求,成为中华民族的伟大骄傲。而相似的证明方法位于国外的提出相对较晚。因此,这也得益于我国数学家对勾股定理的伟大贡献。
  二、西方勾股定理:毕达哥斯拉定理
  根据西方文献记载,勾股定理主要是以毕达哥斯拉进行命名。商高较毕达哥斯拉时期超出五百年左右,毕达哥斯拉出生于公元前五世纪左右,曾经位于世界各地进行游学,其数学等方面这是均源自于众多数学家,随后其建立起毕达哥斯拉学院。
  基于西方学者二维,毕达哥斯拉学派是率先发现并证明勾股定理,毕达哥斯拉学派为对定理的发现证明做出庆祝,屠宰数量达到100头牛用于祭神,专门感谢缪斯,所以定理也被幽默的称作“百牛定理”。此传说,为勾股定理发现赋予了神秘的面纱。
  欧几里得创作的《几何原本》,其中的部分被人们保存并广泛流传,也成为最初的文献资料,即直角三角形,其两直角边的两个正方形纸盒与斜边上的正方形相等。证明方法则是通过面积法作出具体的证明。
  如上图所示,具体证明过程:
  关于直角三角形ABC,各边向外做正方形,并连接CE与FB。由于AC同AF相等,AB同AD相等,且∠FAB同∠CAD相等,因此,△FAB≌三角形△CAD。做CL‖AD。由于SΔFBA=12FA·AC=12SACHF,
  SΔCAD=12AD·DL=12SADLM,
  因此,SACHF=SMELB。同理,可以證明SBKGC=SMLEB,
  因此,AB2=BC2+AC2,即a2+b2=c2。
  三、勾股定理文化价值
  基于东方勾股定理发现以及发展,重视应用成为东方古代数学文化的明显特点,注重理论实际的紧密结合,数学结合,对问题采取系统整理,从而构建算法体系。位于西方,勾股定理注重抽象性,通过抽象思维进行分析思考,数学涉及的图形以及数字均存在思维的抽象性,并基于空间形式当作研究内容,逻辑方面以演绎推理为主[2]。
  对比中西方数学史,均对勾股定理以此进行相应的证明。东方古代数学家,证明过程通过结合图形,出入相补原理均基于形象直观为基础,几何问题更加形象化,此种证明思想属于明显的数学结合思想。而西方证明重视逻辑推理的思维方式,通过简单清晰的符号,严谨的逻辑与推理,充分显示出西方数学所具备的理性。
  结论
  综上所述,基于多元文化分析,勾股定理属于全世界人类的共同遗产,属于世界数学无法分科的重要部分,全世界对勾股定理的社会文化价值均十分关注与重视,且中学课程中均对勾股定理有所涉及与介绍,勾股定理使对学生辩证思维进行教育培养的重要素材之一,同样也为初中数学学习提供了重要的基础资料。
  参考文献
  [1]王芳,张维忠.多元文化下的勾股定理[J].数学教育学报,2016,13(4):34-36.
  [2]卞新荣.多元文化下的勾股定理——数学文化研究性学习教学案例[J].数学通报,2016,50(12):9-14.
其他文献
摘要:随着新课改开展的如火如荼,合作学习作为一种新兴的学习方式一经推出,就得到了教师的广泛应用。这种学习方式对学生的自主学习能力的要求比较高,对初中的数学课堂教学能够起到很大的帮助。针对这种情况,本文围绕着新课程理念下初中学生数学课堂合作的重要性展开讨论,并提出一些相关的实施建议。  关键词:新课程;初中数学;合作学习;重要性  中图分类号:G4 文献标识码:A 文章编号:(2020)-055
期刊
摘要:当今社会面貌日新月异,中国作为国际交流的重要参与者,文化领域早已向多元融合方向发展,时代快速更迭,社会迅速发展,多元文化的融合也在时刻更新,在这样的大背景下,青少年文化需求层次与品位有了很大提升,与此同时,社会发展对教育工作也提出了新的发展要求,考虑到英语在国际文化交流中的重要性,本文将从初中英语教学入手,对中学生跨文化交际能力的培养展开了一系列详细论述,希望能够对相关工作的开展有所帮助。 
期刊
中图分类号:G4 文獻标识码:A 文章编号:(2020)-052     孝道贯古今,上下五千年。“孝道”文化是中国特有的,它有着悠久的历史。据考证,甲骨文中就已经出现“孝”字。“孝”是一个会意字,它的意思是小子搀扶着长着长长胡须的老人。“孝”的基本含义是善于侍奉和赡养父母的意思。传承孝文化对于弘扬中华民族文化遗产有着重要的理论和现实意义。因此,在新的社会发展时期,弘扬和保护孝道文化是我们教
期刊
摘要:反思是我们教师成长的必由之路,教师要在新课程改革中不断反思自我,做精明的反思者,突破旧的思维方式,逐步树立正确的人才观、教学观、质量观等素质教育新观念,提升自我。  关键词:兴趣;合作;创新;地理素养  中图分类号:G4 文献标识码:A 文章编号:(2020)-045     我从事了20年的地理教学工作,发现地理课程是义务教育阶段学生认识地理环境、形成地理技能和可持续发展观念的一门必
期刊
摘要:教育也是现代性的一部分,但好的教育可以保留孩子们个性发展、心智发展、认知能力等的全面性。在教育相对还有较多的单一化、机械化、功利化的属性的今天,我们作为教育工作者,应该有给予孩子更多评价标准、赋予孩子成长所需必要能量的责任,以实现教育的全面发展,全面实现,以达到实现我们的教育理想的目的。  关键词:教育;赋能;方式  中图分类号:G4 文献标识码:A 文章编号:(2020)-040  
期刊
摘要:随着我国素质教育的不断推进,美育教育在初中教学中全面展开。在新时代的教学中,物理教师要把美育教育渗透到实际的教学中。物理教学带给学生的感觉大多是紧密思维,如教师把美育渗透到实际的课堂教学中,既可以让学生在学习的过程中感受到物理独特的美,也能使学生在审美中激活学习的情趣,从而更深地参与到了物理教学中,也有效地提高物理课堂教学质量。  关键词:初中物理;美育教学;渗透策略  中图分类号:G4
期刊
中图分类号:G4 文献标识码:A 文章编号:(2020)-060     初中道德与法治课程的开展,主要是为了引导学生树立正确的“三观”,促使学生形成良好的思想道德素养。将时事热点应用于初中道德与法治课堂教学当中,能够让学生在具体事例中理解所学内容,调动学生参与学习的积极性,有助于满足学生的实际学习需求,进而促进学生的全面发展。文中,我结合自身教学实践,阐述了时事热点应用于初中道德与法治教学
期刊
摘要:随着我国教育体制改革不断推进,数学素养成为课堂教学研究的重点,同时也是数学教育工作者共同面临的课题。“综合与实践”活动课作为数学教学中的重点,通过该教学活动的有效开展,对于增强学生动手操作能力、提升学生的数学素养具有重要的现实意义。基于此,本文主要对小学数学“综合与实践”活动课的理解进行了阐述,重点对小学数学“综合与实践”活动课教学展开了深入分析和研究。  关键词:小学数学;综合与实践;活动
期刊
中图分类号:G4 文献标识码:A 文章编号:(2020)-050  一、游戏价值  幼儿园是儿童学前教育的重要启蒙时期,在这一阶段幼儿由于认知能力、理解能力、学习水平等有限,因此在幼儿园教学中开展游戏活动是最常见的一种教学途径。在幼儿园区域活动中,玩沙作为一种常见的教学游戏,对不同年龄班的幼儿来说都有着重要的教育价值。对于幼儿来说,玩沙游戏更像是其在进行建筑的过程,能够通过一些材料为载体在沙中
期刊
摘要:通过调查,我们发现小学科学课教育教学现状并不容乐观,小学科学教育教学中还存在诸多问题,因此,积极探究提升小学科学教育教学效果的策略,对于小学科学学科教育教学的发展,对于培养学生的科学素养,为祖国将来培养高科技人才打下坚实的基础等方面都具有十分重要的意义。  关键词:科学启蒙教育;小学科学教育教学;现状;对策  中图分类号:G4 文献标识码:A 文章编号:(2020)-047     在
期刊