论文部分内容阅读
为了提高网路流量的预测精度,针对网络的非线性及复杂性,应用最大Lyapunov指数改进算法,利用历史数据信息,在重构相空间的基础上对网络流量进行短期预测,应用混沌理论对某高校主干流量时间序列进行分析。结合C—C算法将实际测试的流量时间序列投影到重构的相空间中,计算其最大Lyapunov指数并对最大可预测时间进行了分析。实验结果表明,最大Lyapunov指数改进算法具有良好的预测效果,较高的预测精度和更好的自适应性,该算法应用于网络流量预测是可行、有效的。