论文部分内容阅读
针对基本粒子群算法的早熟收敛性,在寻优过程中易陷入局部极值。提出一种自适应惯性权重的粒子群优化算法,该算法利用了粒子聚集度、迭代次数来动态的改变惯性权重,以此来平衡局部寻优能力和全局寻优能力,使达到自适应,并使用典型测试函数Griewank和Sphere进行了仿真测试,以此验证改进策略的效果。实验表明,对于多峰函数,与基本粒子群相比较,改进的粒子群优化算法在收敛速度和收敛精度上均高于基本粒子群算法以及一些常见的改进算法。