论文部分内容阅读
提出了2种解决汉语语音识别中声调问题的方法:利用区分性方法对基于隐马尔可夫模型(HMM)的声调模型进行训练;提出将区分性训练的声调模型加入大词汇量连续语音识别系统的最优方法,该方法根据最小音子错误的训练准则以及利用扩展Baum-Welch算法区分性训练与模型相关的概率权重,对声学模型以及声调模型概率进行加权.实验结果表明区分性训练的声调模型能够显著地提高连续语音声调识别率以及大词汇量语音识别系统的识别率,同时区分性的模型权重训练能够在区分性声调模型加入连续语音识别系统之后进一步提高系统的识别性能.