基于非局部自相似性的谱聚类图像去噪算法

来源 :计算机科学 | 被引量 : 5次 | 上传用户:xiayuanyuan001
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
常见的图像去噪方法只是单独地利用了无噪图像或含噪图像的先验信息,并没有将这两种图像的先验信息有效地结合起来。针对这个问题,提出一种联合无噪图像块的先验信息和含噪图像块的非局部自相似性进行去噪的图像去噪算法。首先,对无噪图像块进行谱聚类,通过谱聚类进行学习,图像中的相似块被聚集到同一类,并将学习得到的聚类信息用于含噪图像块的聚类;然后,向量化同一类中的含噪图像块并聚集形成一个矩阵,该矩阵中包含的原始图像数据构成一个低秩矩阵;再通过一个低秩逼近过程估计出相应的原始图像数据;最后,根据逼近得到的原始图像数
其他文献
针对像素层自适应分割算法(Pixel Based Adaptive Segmenter,PBAS)在动态背景下检测准确率低、静止或运动缓慢的前景目标被更新为背景以及出现鬼影干扰的问题,提出了一种结合像素级信息和区域级信息的改进的前景检测算法。首先,提出一种融合区域结构信息和区域颜色信息的背景复杂度衡量方式;然后,采用改进的背景复杂度来控制判定阈值和学习率,并检测前景;其次,对像素层的检测结果使用区
针对Mean Shift算法难以跟踪快速运动目标、算法迭代次数多以及耗费时间长的问题,提出了一种基于Mean Shift的快速运动目标检测方法,该方法结合帧差法并融合背景信息来快速检测运动目标;同时提出一种新的相似性度量方法进行初步检测,排除干扰并快速选出符合标准的目标以进行Mean Shift匹配,找出最佳目标。该方法不仅减少了传统方法的迭代次数,缩短了算法所需时间,而且在跟踪实验中取得了较好的
2020年新冠肺炎疫情大流行给全球的生活和经济发展带来了较大影响以及更多的不确定性。疫情期间使中日各层交流受阻,两国双边贸易下降的同时也给疫情常态化下中日交流带来更
全球治理人才是各国参与全球治理的重要战略资源,是参与全球治理和推动全球问题解决的中坚力量。近年来,我国越来越重视全球治理人才的培养,积极探索多种有效的培养方式。然