论文部分内容阅读
摘要:数学思想方法是对数学的知识内容和所使用方法的本质的认识,它是从某些具体数学认识过程中提炼出来的对数学规律的理性认识。数学知识与数学思想方法是辨证统一的,学生通过数学学习,形成一定的数学思想方法,这应该是数学课程的一个重要目的。在小学数学中渗透的数学思想方法主要有:数形结合、对应、分类、化归、归纳、统计、假设、比较、可逆等。
关键词:小学数学;培养;数学思想方法
教学中,要明确渗透数学思想方法的意义,认识数学思想方法是数学的本质之所在、是数学的精髓,只有掌握了方法、形成了思想,才能使学生受益终生。如何帮助学生在数学学习中感悟数学思想,积累数学活动经验,是需要我们小学数学教师潜心思考与研究的。我们要想方设法帮助学生积极参与数学学习,重视数学思想的渗透和数学活动经验的积累。下面谈谈我的一点见解。
一、备课:研读教材、明确目标、设计预案、挖掘数学思想方法
首先,数学思想方法是数学知识在更高层次上的抽象概括,教材中,大量的数学思想方法是蕴涵于表层知识中的,处于潜形态的。有的数学思想方法与数学知识直接溶于一体,有的则与相关的数学知识溶于一体。因此,作为教师应该先深入挖掘具体教材中的数学思想方法,自己能够先将这些深层次的知识由潜形态变为显形态,由对它们的朦胧感受转变为清晰的理解。
其次,同一教材内容蕴涵的数学思想方法不止一种,需要重点渗透的可能只是某种思想方法,不必面面俱到,全面到位。即使同一数学思想方法,在不同的教学阶段,也应该确定不同的要求。因此,在进行教学预设时,要合理细致地确定某一课时需重点渗透的数学思想方法。如在教学100以内的数的认识时,以百鸟图为素材,通过找某一只鸟为活动,有效实践着数的组成、数的读写法和基数与序数的沟通。你能找出第83只鸟在哪吗?你是怎样找的?生1:一行10个,先数出8行,再数出3个,就是第83只鸟。生2:先找10、20、……、80。再数81、82、83。生3:先找到100只,再倒着数回去。在学生找数的过程中从几个十到几个一,渗透了数的组成,体现了数的读、写规范,同时,多样化的找数与数数有机地结合起来,更能有效的认识100以内的数。“形”作为学习的承载体,将抽象的数据形象化,并有机地沟通数的意义,培养数感和读写数的方法之间的联系,达到教学的多元效用。
二、上课:创设情境、建立模型、解释应用,渗透数学思想方法
数学是知识与思想方法的有机结合,没有不包含数学思想方法的数学知识,也没有游离于数学知识之外的数学思想方法。因此,这就要求教师在课堂教学中,在揭示数学知识的形成过程中渗透数学思想方法。
四年级下册的《约数和倍数》。有一位老师是这样进入新课的——
师:你们能够学着老师来说话吗?我是你们的老师。
生:我们是你的学生。
师:刚才我们描述的是什么关系?
生:相互关系。
师:我是我妈妈的女儿。
生:你是你妈妈的女儿。
……
以上围绕生活素材展开的铺垫谈话,与新课中即将接触到的约数与倍数关系就是在思想内容上进行了类比。
四年级下册的《升和毫升》。教师提出问题:“你知道这个冷水壶的容量是多少吗?”通过实际操作发现,用比较小的水杯去测量大约有这样的5杯水那么多;用比较大的水杯去测量大约有这样的4杯水那么多。由此让学生深刻体会到:测量或计算容量的多少也需要有统一的单位,任何量的量化都必须有一个标准,而且标准要统一。这样,自然地渗透了单位思想。
用数学思想方法推导公式的形成,如平面图形的面积和立体图形体积公式。培养学生的思维,在公式的教学中不要过早给出结论。引导學生参与结论的探索、发现,研究结论形成的过程及应用的条件,领悟它的知识关系,培养学生从特殊到一般、类比、化归、转化、等量代换的数学思想。如对平行四边形的面积的教学,让学生初步运用转化的方法推导出平行四边形面积公式,把平行四边形转化成为长方形,并分析长方形面积与平行四边形的关系,再从长方形的面积计算公式推出平行四边形的面积计算公式。在教学过程中先巧设情境,铺垫引入,激发学生进一步探讨平行四边形的面积计算方法的求知欲望。再合作探索,迁移创造,让学生通过动手操作,剪、拼、摆等把平行四边形转化为长方形,并把自己的发现表述出来,动脑思考长方形与平行四边形有什么关系,长方形的长与平行四边形的底有什么关系,长方形的宽与平行四边形的高有什么关系。在这个环节中,学生动手操作、合作交流,主动地去探索和发现平行四边形面积的计算方法,交流时学生说明剪拼方法、各部分间的关系,互相提问并解答,在生生交流中学生理解平行四边形与拼成的长方形间的内在联系,既加深了对新知的理解,也培养了学生的语言表达能力、思维能力及提出问题的能力和解决问题的能力。最后层层递进,拓展深化,练习设计由浅入深,涵盖了不同角度的问题,不但使学生在练习中思维得以发展,创新素质也得到了锤炼。
通过学习2011年版的《小学数学新课程标准》更加使我认识到作为一名数学教师必须不断更新自己的教学观念,改变旧的不能顺应学生发展的教学模式,不断钻研教材,学习新理念、新方法,更深入的了解自己的学生,钻研教材教法,不断提升自己的教育教学教研水平,只有这样才能适应小学数学现代教学的需要。
关键词:小学数学;培养;数学思想方法
教学中,要明确渗透数学思想方法的意义,认识数学思想方法是数学的本质之所在、是数学的精髓,只有掌握了方法、形成了思想,才能使学生受益终生。如何帮助学生在数学学习中感悟数学思想,积累数学活动经验,是需要我们小学数学教师潜心思考与研究的。我们要想方设法帮助学生积极参与数学学习,重视数学思想的渗透和数学活动经验的积累。下面谈谈我的一点见解。
一、备课:研读教材、明确目标、设计预案、挖掘数学思想方法
首先,数学思想方法是数学知识在更高层次上的抽象概括,教材中,大量的数学思想方法是蕴涵于表层知识中的,处于潜形态的。有的数学思想方法与数学知识直接溶于一体,有的则与相关的数学知识溶于一体。因此,作为教师应该先深入挖掘具体教材中的数学思想方法,自己能够先将这些深层次的知识由潜形态变为显形态,由对它们的朦胧感受转变为清晰的理解。
其次,同一教材内容蕴涵的数学思想方法不止一种,需要重点渗透的可能只是某种思想方法,不必面面俱到,全面到位。即使同一数学思想方法,在不同的教学阶段,也应该确定不同的要求。因此,在进行教学预设时,要合理细致地确定某一课时需重点渗透的数学思想方法。如在教学100以内的数的认识时,以百鸟图为素材,通过找某一只鸟为活动,有效实践着数的组成、数的读写法和基数与序数的沟通。你能找出第83只鸟在哪吗?你是怎样找的?生1:一行10个,先数出8行,再数出3个,就是第83只鸟。生2:先找10、20、……、80。再数81、82、83。生3:先找到100只,再倒着数回去。在学生找数的过程中从几个十到几个一,渗透了数的组成,体现了数的读、写规范,同时,多样化的找数与数数有机地结合起来,更能有效的认识100以内的数。“形”作为学习的承载体,将抽象的数据形象化,并有机地沟通数的意义,培养数感和读写数的方法之间的联系,达到教学的多元效用。
二、上课:创设情境、建立模型、解释应用,渗透数学思想方法
数学是知识与思想方法的有机结合,没有不包含数学思想方法的数学知识,也没有游离于数学知识之外的数学思想方法。因此,这就要求教师在课堂教学中,在揭示数学知识的形成过程中渗透数学思想方法。
四年级下册的《约数和倍数》。有一位老师是这样进入新课的——
师:你们能够学着老师来说话吗?我是你们的老师。
生:我们是你的学生。
师:刚才我们描述的是什么关系?
生:相互关系。
师:我是我妈妈的女儿。
生:你是你妈妈的女儿。
……
以上围绕生活素材展开的铺垫谈话,与新课中即将接触到的约数与倍数关系就是在思想内容上进行了类比。
四年级下册的《升和毫升》。教师提出问题:“你知道这个冷水壶的容量是多少吗?”通过实际操作发现,用比较小的水杯去测量大约有这样的5杯水那么多;用比较大的水杯去测量大约有这样的4杯水那么多。由此让学生深刻体会到:测量或计算容量的多少也需要有统一的单位,任何量的量化都必须有一个标准,而且标准要统一。这样,自然地渗透了单位思想。
用数学思想方法推导公式的形成,如平面图形的面积和立体图形体积公式。培养学生的思维,在公式的教学中不要过早给出结论。引导學生参与结论的探索、发现,研究结论形成的过程及应用的条件,领悟它的知识关系,培养学生从特殊到一般、类比、化归、转化、等量代换的数学思想。如对平行四边形的面积的教学,让学生初步运用转化的方法推导出平行四边形面积公式,把平行四边形转化成为长方形,并分析长方形面积与平行四边形的关系,再从长方形的面积计算公式推出平行四边形的面积计算公式。在教学过程中先巧设情境,铺垫引入,激发学生进一步探讨平行四边形的面积计算方法的求知欲望。再合作探索,迁移创造,让学生通过动手操作,剪、拼、摆等把平行四边形转化为长方形,并把自己的发现表述出来,动脑思考长方形与平行四边形有什么关系,长方形的长与平行四边形的底有什么关系,长方形的宽与平行四边形的高有什么关系。在这个环节中,学生动手操作、合作交流,主动地去探索和发现平行四边形面积的计算方法,交流时学生说明剪拼方法、各部分间的关系,互相提问并解答,在生生交流中学生理解平行四边形与拼成的长方形间的内在联系,既加深了对新知的理解,也培养了学生的语言表达能力、思维能力及提出问题的能力和解决问题的能力。最后层层递进,拓展深化,练习设计由浅入深,涵盖了不同角度的问题,不但使学生在练习中思维得以发展,创新素质也得到了锤炼。
通过学习2011年版的《小学数学新课程标准》更加使我认识到作为一名数学教师必须不断更新自己的教学观念,改变旧的不能顺应学生发展的教学模式,不断钻研教材,学习新理念、新方法,更深入的了解自己的学生,钻研教材教法,不断提升自己的教育教学教研水平,只有这样才能适应小学数学现代教学的需要。