论文部分内容阅读
针对仅使用群智能优化算法及点云空间信息进行点云配准时,优化过程寻找两片点云对应点耗时较长,收敛速度较慢的缺点,提出一种基于曲率信息的人工蜂群点云配准算法。算法根据曲率信息提取特征点,通过改进人工蜂群算法优化目标函数得到可以使两片点云重合的最佳变换矩阵。在种群优化过程中根据曲率信息约束对应点寻找范围,缩小参与计算点云的规模。对比实验表明,与仅采用随机选点方法和使用点云空间坐标信息的配准算法等相比,所提出算法可以在不降低配准精度的同时,有效加快配准收敛速度,显著缩短点云配准所用时间。