论文部分内容阅读
为实现无监督异常检测,提出一种用于网络数据训练学习的免疫优势多克隆网络聚类算法。根据抗体抗胍亲合度,通过免疫优势、克隆、交叉、非一致变异、禁忌克隆和克隆死亡等人工免疫系统算子,实现抗体网络的进化学习和自适应调节。以一个小规模的嘲络映射原始数据集的内在结构,利用基于凝聚的层次聚类方法对网络结构进行分析,从而获得描述正常和异常行为的数据特征。仿真结果表明,该算法适用于大规模、无标识数据的异常检测,并能检测出未知攻击。