论文部分内容阅读
将小波多尺度分解与传统MeanShift滤波算法相结合提出的一种有效的图像滤波方法。先将含噪声图像进行Mallat塔式分解,获得不同尺度、不同频带的子图像。将低频近似图像保持不变,对高频细节进行MeanShift滤波,最后将低频近似图像与高频滤波后的图像进行合成得到去噪后的图像。由于MeanShift算法是一种迭代方法,要保证较高的数值计算精度则需要较多的迭代次数,耗费较长的计算时间,为克服这一缺点,提出了采用Fourier级数来近似计算高斯函数。实验结果表明该方法在降低噪声的同时能够尽可能的保留图