基于Inception模块的卷积自编码器图像去噪

来源 :计算机应用与软件 | 被引量 : 0次 | 上传用户:sss03157017633
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为了更有效地去除图像中存在的高斯噪声,提出一种结合Inception模块的卷积自编码器图像去噪模型。以完整图像作为输入和输出,利用Inception模块对噪声图像进行去噪,使用改进Inception反卷积模块将去噪图像进行还原,提升模型去噪能力。同时在模型中引入批量归一化(Batch Normalization,BN)和随机失活层(Dropout)有效解决过拟合问题,引入ReLU函数避免模型梯度消失,加速网络训练。实验结果表明,与深度卷积神经网络方法相比,该模型获得了更高的峰值信噪比和结构相似度,其
其他文献
应用投入产出法就辽宁省生产性服务业对就业的影响效应进行了定量分析,通过测度生产性服务业的直接贡献度、间接贡献度、综合贡献度方面衡量了辽宁生产性服务业吸纳就业的能
为对严重事故管理导则(SAMG)的编写和实施做进一步改进,本文在调研国内其他核电厂严重事故后缓解有效举措后,选择冷却剂主管道冷段部分双端断裂(LBLOCA)叠加丧失应急堆芯冷却
为了提高卷积神经网络对非线性特征以及复杂图像隐含的抽象特征提取能力,提出优化卷积神经网络结构的人体行为识别方法。通过优化卷积神经网络模型,构建嵌套Maxout多层感知器层的网络结构,增强卷积神经网络的卷积层对前景目标特征提取能力。通过嵌套Maxout多层感知器层网络结构可以线性地组合特征图并选择最有效特征信息,获取的特征图经过矢量化处理,分类器Softmax完成人体行为识别。仿真实验结果表明,该方
提出一种适用于短文本分类的多基模型框架Bagging_fastText(B_f)。它是一种基于自举汇聚法的快速文本分类算法的框架。以fastText为基模型,运用集成学习思想,设置最优超参数并训练出多个基模型组成多基模型,再通过投票机制获取最终类别。对商品名称短文本分类的实验结果表明,提出的B_f比fastText、朴素贝叶斯传统文本分类算法、文本卷积神经网络(TextCNN)算法的分类效果更优。