q)相关论文
调和分析是现代数学中的核心研究领域之一,其思想和方法几乎渗透到数学的各个分支.分数次积分算子具有深刻的偏微分方程背景,也是......
研究了区组设计4-(q+1,7,λ)以一般射影线性群PGL(2,q)为区传递自同构群的存在性条件,以及由自同构群PGL(2,q)构造区传递4-(g+1,7,λ)设计的计算机算......
本篇论文中,我们对wF(p,r,q)类算子的逆算子进行了研究,得出一个重要结果:可逆的wF(p,r,q)类算子为对数-亚正规算子。......
令m2(3,q)是使得PG(3,q)中一个完全k-cap集存在的所有k值中第二大的那个值.本文研究了有限射影空间PG(3,q)中m2(3,q)的上界值,改进了一些定......
在这份报纸,在本地人上由行动研究光谱全部的班 wF 的理论(p, r, q ) 操作员,我们得到一些重要结果。例如全部的类 wF ( p , r , q )操作......
对ωF(p,r,q)类算子的局部谱理论进行了比较系统的研究,得出如下结果:ωF(p,r,q)类算子是次标量算子;ωF(p,r,q)类算子是次可分解算子;ωF(p,r,q)类算子......
对wF(p,r,g)类算子的基本性质进行了比较系统的研究,得出wF(p,r,g)类算子的逆算子仍然是wF(p,r,q)类算子;wF(p,r,q)类算子限制在其不变子空间上的算子......
通过把B-值Dirichlet级数在全平面上的(p,q)(R)型和下(p,q)(R)型转化为Dirichlet级数在全平面上的(p,q)(R)型和下(p,q)(R)型,结合相应的Dirichlet级......