χ2统计相关论文
针对信息增益模型在文本分类中的不足之处,提出了一种基于灰关系与信息增益的文本分类算法.首先基于改进的χ2统计进行类别特征选......
特征选择在文本分类中是非常必要的,这是由于它可以使分类更加有效与准确。本文根据特征选择方法χ2统计方法的不足,对χ2统计进行......
将一种改进的隐马尔可夫模型(HMM)应用于文本分类中,在考虑其前向依赖的同时,需考虑状态的后向依赖性.将当前观测值和和当前状态对其......
随着Internet技术的飞速发展,网页上存在着各种各样、类目繁多的信息,因此网页分类技术就显得越来越有意义。使用向量空间模型(VSM)......
特征选择是中文文本分类的一个重要研究领域,是提高学习算法性能的一个重要手段,也是模式识别中数据预处理的关键步骤。该文对特征......
采用向量空间模型(vector space model,VSM)表示网页文本,通过在CHI(Chi-Square)特征选择算法中引入频度、集中度、分散度、位置信息这......
期刊
CHI是文本分类中特征选择的重要方法.本文分析了CHI特征选择的特点,针对该方法的不足之处,提出了一种新的基于最低词频CHI的特征选......
CHI是一种常用的文本特征选择方法。针对该模型的不足之处,以特征项的频数为依据,分别从特征项的类内分布、类间分布以及类内不同文......
在基于χ2统计独立性的离散化算法中,自由度与期望频数的选取直接影响χ2计算的准确性,从而影响离散化的性能.为此,提出了一种基于......