不平衡类相关论文
印刷电路板贴片安装产品缺陷的机器视觉检测属于模式识别的多分类问题,合格产品类和多个缺陷类是不平衡的:超过90%为合格类,同时将缺......
医保欺诈检测具有迫切的现实意义,当前工作主要以机器学习方法为主,但面临两个重要问题:(1)数据不平衡问题较为突出,欺诈样本占比......
具有不平衡类分布的数据集在许多实际应用中是很常见的,但由于类分布不平衡,给那些已有的分类算法带来了很多问题。一种为处理不平衡......
针对不平衡分类问题,提出了逻辑判别式算法.该算法使用拟牛顿法迭代求解模型参数,考虑模型的准确率和召回率,构造了新损失函数(Like......
分类问题是数据挖掘领域的研究热点之一。多标签分类器可以将数据对象预测为多个类别,训练集中属性相同但对应类标签不同的对象的......
不平衡类问题在现实生活中普遍存在,表现为一个类的实例数明显多于另一个类的实例数,其类分布不平衡这一特征导致了传统的分类方法不......
传统的Bagging分类方法对不平衡数据集进行分类时,虽然能够达到很高的分类精度,但是对其中少数类的分类准确率不高。为提高其对少......
目前已有的视频异常行为检测学习模型在训练过程中忽略了训练集中存在的不平衡类现象,造成模型偏向于多数正常类,减弱了少数异常类......
类分布不平衡数据与人们的生活息息相关,准确地分类这些数据具有非常重要的意义,因此不平衡数据分类成为数据挖掘领域的热点。面向不......