最小半度相关论文
给定有向图D ,对于D的任意两个子集S = {s1,…,Sκ}和T= t ,…,tκ},S∩T =(?) , D的一个多对多κ-不相交有向路覆盖(简称κ - DDP......
利用收缩技术,证明了1)阶为n=2k且最小半度至少是k的有向图D是强哈密尔顿连通的,除非D属于某些图类; 2)2强连通且包含n个顶点、(n-......
利用路收缩技术,证明了,如果有向图D满足下列条件中的任何一个,(1)最小半度δ0(D)≥(n+p+q)/2;(2)D是(p+q+1)强连通有向图,且d+(x)+d+(y)+d-(u)+d-(v)≥2(n+p+q)-1,......
对Lichiardopol提出的猜想,给定正整数q≥3,r≥1,在竞赛图T中,若最小出度δ+(T)≥(q-1)r-1,则在T中至少存在r个点不相交的q圈.证明了当r......
利用收缩技术,推广了有向图理论中哈密尔顿性问题的几个结论,给出了有向图是强哈密尔顿连通的最小半度、度和、最少边数等条件.......