类增量学习相关论文
现有的类增量学习方法多是采用存储数据或者扩展网络结构,但受内存资源限制不能有效缓解灾难性遗忘问题。针对这一问题,创新地提出基......
良好的数字病理图像质量是数字病理学准确应用的前提。为提出应用性更强的数字病理图像质量问题的检测方法,本文把数字病理图像的......
虽然目前基于深度学习的图像分类算法在大规模数据上取得优异的成绩,但是目前主流的深度学习算法主要基于批量训练,而批量训练算法......
基于深度神经网络的分类模型在许多领域的任务中效果显著。然而,对于在某任务上训练好的模型,如果使其对一些新类别的数据进行学习......
类增量学习技术在近年来逐渐成为机器学习领域的研究热点,其技术特点是在增量学习过程中随着数据规模的持续扩大,数据类别也随之增......
在通往人工智能的道路上,一个主要的开放问题是增量学习系统的开发,该系统可以随着时间的推移,不断地从数据流中学习知识。近年来,......
为满足现役装备根据故障样本数据集积累的特点进行自适应故障诊断的需求,本文将极限学习机(extreme learning machine,ELM)的数据......
针对神经网络模型进行类增量训练时产生的灾难性遗忘问题,提出一种基于分类特征约束变分伪样本生成器的类增量学习方法.首先,通过......
针对神经网络模型进行类增量学习时产生的灾难性遗忘问题,提出一种基于VAE的伪样本重排练实现的类增量学习方法。采用VAE生成伪样......
提出了一种超球支持向量机类增量学习算法。对每一类样本,利用超球支持向量机在特征空间中求得包围该类尽可能多样本的最小超球,使各......
针对支持向量机类增量学习过程中参与训练的两类样本数量不平衡而导致的错分问题,给出了一种加权类增量学习算法,将新增类作为正类,原......
提出一种新的基于超椭球的类增量学习算法。对每一类样本,在特征空间求得一个包围该类尽可能多样本的最小超椭球,使得各类样本之间......
针对P2P流媒体流量识别中的类增量学习问题,提出一种基于"一对一"支持向量机多分类器的类增量学习算法CIOOL。充分利用原有多分类器......