线性局部切空间排列相关论文
在传统的故障诊断方法中,往往先要基于先验知识求取原始振动信号的特征,并将其输入到智能分类器中进行模式识别,其中容易出现信息......
航空发动机作为航空器动力源泉,由各种复杂旋转机械构成,其承担着保证飞行器平稳飞行的重要任务。作为航空发动机核心的航空发动机......
为有效提取出电动汽车电机轴承故障特征频率,将局部特征尺度分解、线性局部切空间排列和包络分析进行结合,用于电动汽车电机轴承的......
针对故障诊断中特征集包含非敏感特征和维数过高的问题,提出基于特征选择(Feature Selection,FS)与流形学习维数约简的故障诊断方法。......
针对滚动轴承故障诊断问题,提出了一种基于图像形状特征和线性局部切空间排列(LLTSA)的故障诊断方法。首先采用SDP(Symmetrized Dot P......
如今人们对股票交易的兴趣日益见长,希望通过对股市各种信息的综合分析来帮助指导股票交易,以获得高额利润。然而股票价格受到多方......
股票数据具有非线性和含有大量噪声的特点,传统股票预测模型难以充分识别股票非线性特征以及降低噪声,导致预测精度不高.为了提高......
线性局部切空间排列算法(Linear local tangent space alignment,LLTSA)是能够较好应用于模式识别问题的降维方法,但由于其属于无监......