马尔可夫毯相关论文
数据挖掘已经成为现在研究的重点,在观测数据集充实的条件下,因果网络图直接地展示出了数据中相应的因果关系。但是,当所有节点之......
从基因表达数据中推断基因调控网络有助于深入了解各种生物过程,促进药物的设计以及药物靶点的发现。随着海量组学数据的产生,如何......
近年来,因果特征选择已逐渐成为机器学习和因果发现领域的研究热点。它通过将特征预测与因果发现联系在一起来识别目标属性(Target ......
近年来,在线流特征选择(Online Feature Selection with Streaming Features,OSFSF)作为数据降维的有效方法,以实时过滤不相关和冗余......
针对现有的企业运行指标分析方法只强调动态或静态信息,不易实现二者结合的情况,建立了用于企业运行指标因果分析的动态贝叶斯网络......
贝叶斯网络(BN)应用于分类应用时对目标变量预测有直接贡献的局部模型称做一般贝叶斯网络分类器(GBNC)。推导GBNC的传统途径是先学......
针对入侵检测数据集维数高,导致检测算法处理速度慢,而其中包含许多对检测效果影响不大的特征的问题,提出了一种分步特征选择算法......
基于CT影像的肺结节的良恶性识别是肺癌诊断的重要环节,针对这一问题,提出一种基于属性关系图(attributed relational graph,ARG)......
由于股票价格波动具有较强的突变性且易受外界因素影响,导致股票价格走势难以预测。提出基于离群特征模式的股市波动预测模型(SFSVM)......
传统多维贝叶斯网络分类器(MBNC)限制其模型结构必须是二分的,通过移除该限制可得到更准确的对关联分布建模的通用MBNC(GMBNC)。基......
针对当前的马尔可夫毯学习算法会引入不正确的父子节点和配偶节点的问题,提出了一种基于逻辑回归分析的马尔可夫毯学习算法RA-MMMB......
贝叶斯网络图结构的自动学习是机器学习中的一个挑战,针对传统算法学习效率低、难于去除冗余边及确定结构中边的方向等问题,提出了......