自功能化荧光碳点的制备及其对活性氧的分析检测

来源 :第十一届全国化学生物学学术会议 | 被引量 : 0次 | 上传用户:wolovenorton
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  活性氧(Reactive Oxygen Species,ROS)是生物有氧新陈代谢过程中的主要产物,包括超氧阴离子自由基(O2-)、单线态氧(1O2))、羟基自由基(·OH)、一氧化氮(NO)、过氧亚硝酸根(ONOO-)等。这类物质具有较强的氧化活性,在许多生理活动中起着至关重要的作用。它们与癌症、机体炎症、脂质的过氧化、DNA 损伤和信号传导等有直接的关系。同时,也参与或影响细胞内的信号转导和基因表达[1]。然而,生物体内活性氧的寿命非常短,导致其稳态浓度极低,而短寿命和低浓度意味着活性氧的测定非常困难。所以,监控生物体内的活性氧物种的产生及其含量测定对于疾病的诊断及病理研究有着十分重要的意义。荧光分析法结合共聚焦显微成像技术,具有灵敏度高、选择性好等优势,且能够有效实现实时观察活细胞和组织内的ROS 水平[2]。碳点作为碳家族中的重要成员,因其在光致发光特性、生物相容性、催化活性、电子特性等方面具有独特优势,广泛应用在化学或环境检测、生物传感、疾病诊疗、光催化、光电器件等多学科领域[3]。因此,利用碳点优异的光学性能、低毒性及良好的生物特性,应用于活性氧的分析检测具有一定的发展前景[4]。我们选用对不同类型活性氧具有特异性识别作用的物质或结构为前驱体,通过简便的制备方法,设计合成具有自功能效果的荧光碳点,无需额外繁琐的修饰过程即可实现对不同类型活性氧物种的分析检测,为疾病的早期诊断提供了新思路。
其他文献
While most nanomedicine is playing important role in cancer therapy,the nanomaterial may pose a threat to the integrity of the vasculature system.It has been earlier reported that certain nanoparticle
In recent study,SWNHs has a high near-infrared optical absorption capacity,which can effectively convert near-infrared light into heat[1].However,its poor water dispersion and adsorption of plasma pro
碳量子点(CDs)具有荧光发射优异、毒性低和生物相容性良好等优点,但CDs 发射波长短、特异性靶向能力缺乏等不足限制了其在生物成像、治疗等生物领域的实际应用。在此,我们以对氨基偶氮苯为原料一步水热合成了一种具有红色荧光发射的CDs(RCDs)。体外细胞实验表明RCDs 具有较小的细胞毒性,适用于生物研究。共聚焦成像研究进一步揭示RCDs通过与细胞核内RNA 作用有效地靶向到核仁,实现对细胞核的成像
单壁碳纳米角(Single-wall carbon nanohorns,SWNHs)在合成过程中不需使用金属催化剂催化,使其表现出低毒性;同时,其能有效地将近红外光转换成热,是一种理想的纳米光热试剂[1]。然而,水溶性差、靶向性缺乏的不足严重限制了它在生物医学上的实际应用。二氢卟吩e6(Chlorine e6,Ce6)具有高的单线态氧量子产率,可以被用于光动力治疗肿瘤,但其在血液中易被清除的不足限
Although considerable clinical attempts on various types of cancers have achieved,photodynamic therapy(PDT)still suffers attenuated therapeutic effects due to the developed resistance of cancer cells.
光热和光动联合治疗(SPT),在理论上可以表现出“1+1 > 2”的协同效应。[1]然而,由于肿瘤内的微环境缺氧,光动力治疗的效果会受到严重限制,导致光热治疗在协同治疗过程中起主要治疗作用。进而导致传统光动力和光热治疗的联合不能充分发挥协同治疗的效果。因此,需要开发新的联合治疗药物以实现光动力和光热联合治疗的真正协同作用。我们设计合成了一种多功能聚合物PPAIB,并基于MnO2 纳米片构筑了联合光
Recently,the self-assembly of functionalized small molecular photosensitizes(PSs)into “one-for-all” nanoparticles has drawn great attention in phototheranostic cancer treatment because of their high t
生物合成策略是构建肿瘤特异性成像和治疗功能纳米材料的一种前沿合成方法,其基于纳米材料在肿瘤部位原位可控构建引发材料特定的物理化学性质变化(如近红外吸收、纳米粒子尺寸变化等)以提高肿瘤诊疗的精准性[1-3].然而,现阶段在肿瘤细胞原位构建有前景的诊疗纳米材料仍很少有报道.因此,通过与肿瘤微环境的化学反应原理来操纵诊疗纳米材料的生物合成具有重要意义.本研究设计了一种肿瘤微环境响应细胞原位精准合成纳米普
Nature has constructed complicated living systems that often have elaborate hierarchical structure assemblies arising from weakly interacting,yet readily available building blocks.[1] Constructing an
Microfluidic technology has been extensively employed in chemical and biological synthesis in a time-efficient manner.1,2 In this work,we applied a microfluidic chip to the controlled flow synthesis o