超薄金属有机层的合成与光催化CO2还原研究

来源 :天津理工大学 | 被引量 : 0次 | 上传用户:songyc198610712
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
化石燃料的大量消耗与不可再生性造成了严重的环境污染与能源紧缺。利用光催化技术将大气中的CO2转化为高附加值化学品,将是解决环境污染和能源危机的有效途径。金属有机骨架材料(MOF)因其具有大的比表面积、高度有序的孔结构以及可调的结构和功能,在催化领域得到了非常广泛的应用。但是,由于块状MOF颗粒体积庞大,不利于活性位点的充分暴露,同时庞大的体积也极大限制了催化过程中电荷转移和传质。如果将块状MOF材料纳米化为超薄的金属有机层(MOL)纳米片将会解决上述问题,大幅提高其催化性能。在本文中,我们利用GO模板法在GO模板上成功生成了超薄的MOL纳米片,同块体MOF相比,其光催化CO2还原的性能得到了极大的提升。本文具体研究内容如下:1.以GO作为模板,成功将块状MOF纳米化为超薄MOL纳米片。通过控制CoCl2·6H2O的用量,合成了一系列超薄的Co-MOL@r-GO复合材料(Co-MOL@r-GO-1、Co-MOL@r-GO-2、Co-MOL@r-GO-3)。研究表明,CoCl2·6H2O的添加量会极大地影响Co-MOL的负载量与尺寸,进而影响其催化性能。将一系列的Co-MOL@r-GO复合材料应用于光催化CO2还原,都表现出远高于块状Co-MOF的催化效率,且复合材料Co-MOL@r-GO-2表现出最高的催化活性。光照8 h,CO产率可高达25442μmol/gCo-MOL,催化活性是块状Co-MOF的21.7倍。研究表明,相较于块状MOF,MOL的超薄特性使其暴露了更多的活性位点,同时也更加有利于电荷的转移和传质。r-GO充当了光敏剂与催化剂之间的电子传输介质,极大地加速了光生电子的传输。因而Co-MOL@r-GO复合材料的光催化CO2还原的活性得到了极大的提高。这表明GO模板法是合成高效MOL@r-GO光催化剂的一种有效策略。同时也为超薄MOL纳米片的合成提供了一种新的思路。2.沿用GO模板法设计与合成了一系列超薄的混金属MOL:Ni Co-MOL@r-GO复合材料,用于高效光催化CO2还原,拓展了GO模板法在合成MOL@r-GO复合催化材料上的应用,印证了GO模板法在合成超薄MOL纳米片材料领域的普适性。
其他文献
纤维状可拉伸应力/应变传感器因其尺寸较小,能够集成在衣物中,因而在可穿戴电子领域及人体运动健康信号实时监测方面得到了广泛的关注。在传感材料中引入微结构,是提高应力/应变传感器应变范围的一种有效的方法。其中,在纤维状应力/应变传感中引入褶皱结构,能够获得较大的应变传感范围及良好的循环稳定性;然而,目前通过碳纳米管垂直阵列制备褶皱结构存在材料难获得、成本高的问题;具有成本优势的粉末状材料却很难在纤维表
学位
单原子催化剂具有充分暴露的活性位点和最大化的原子利用率,在催化方面显示出巨大的应用前景。但是,单原子催化剂只有一种特定的活性位点,当涉及多步骤或多个中间体参与的复杂反应时,其很难将催化活性提高到最佳水平。与单原子催化剂相比,双原子催化剂具有一种以上的吸附位点,能够优化反应物或中间体与催化活性中心之间的相互作用,使得作为活性位点的双原子可以进行协同催化,提高反应的速率和选择性,从而提高整体催化性能。
学位
随着经济的高速发展,化石能源持续消耗,CO2在大气中不断积累,这造成了严重的温室效应和环境保护问题,威胁着人类社会的可持续发展。因此,人们迫切需求一种有效的方法加速CO2的固定和转化。电催化CO2还原策略可将CO2转化为有经济价值的增值化学品和燃料,因此有很大的应用潜力。目前电化学CO2还原的研究焦点主要集中于高效催化剂的开发和利用。银(Ag)基材料因其较高的CO的法拉第效率而广泛用于CO2电催化
学位
目前,可再生清洁能源(例如:风能、潮汐能、太阳能等)已经部分取代了化石燃料来缓解能源危机和环境污染。但受到可再生能源地域性、海洋性或者是间歇性等特点的限制,发展可再生能源的存储与转换体系成为目前利用可再生能源的重要环节之一。氢气因其高能量密度和零碳排放而被视为一种在将来低碳社会中的理想能源载体。电催化全水解(Overall water splitting,OWS)是一种可持续的清洁制氢技术,但仍然
学位
银纳米材料是光电、催化、生物等领域中应用最广泛的材料之一。其中,具有一维纳米结构的材料(如银纳米棒、银纳米线等)在表面增强拉曼(Surface-enhanced Raman spectroscopy,SERS)及透明导电薄膜的应用中有着举足轻重的地位。目前,多元醇法是制备银纳米材料的主要方法,但这种合成方法产生的大量有机废液难以回收利用,而直接排放会对生态环境造成巨大的破坏。因此,为了顺应当今社会
学位
气是宇宙生化论的基础,阴阳五行之气的运转生成宇宙万物,也必然要遵循其内在的规律,人类也必须遵循自然规律。人体的疾病与顺应自然规律以及体质密切相关,本文研究五种体质病变,金型体质病、木型体质病、土型体质病、火型体质病、水型体质病。提出“一脏起病”观点,强调先天体质的一脏之不足或有余,将影响其发病与否、病变部位、病变性质、愈后以及治疗的选方用药和药物的性质。
期刊
超疏水层的水接触角(CA)>150°,水滑动角(SA)<10°,它能抑制水滴的附着,使其迅速从表面滚落,在自洁、不湿润、防雾、防冰等领域具有广阔的应用前景。通过喷涂法获得的超疏水涂层,可以在不受基质限制的情况下,大规模生产超疏水表面,这种超疏水涂层通常由低表面能涂料和微纳米颗粒组成。本工作报道了采用水基自由基聚合法制备的含氟丙烯酸乳液,并制备了动态拒水性好、机械强度高的自交联含氟丙烯酸酯纳米涂层。
学位
随着能源的大量开采与消耗,如何解决由于能源消耗所引起的生态问题,已经成为了当今社会共同面临难题。为了应对由能源过度应用引起的各种问题,人们已经对如何实现能源循环利用做了大量研究,开发了一些新的技术,例如二氧化碳还原(CO2RR)和燃料电池等。但是新技术的支撑便是新材料的开发,如何在现有的材料中找到高活性、高选择性的催化剂材料已经成为研究的重点问题。在本文中,成功设计合成出了氮掺杂在碳上的铜锡双原子
学位
妥善处理处置放射性废物、提升对突发核污染事故的应急处置能力是落实核安全与放射性污染防治工作的重点任务。放射性废液中的裂变产物137Cs(t1/2=30.2年)、90Sr(t1/2=28.8年)、133Ba(t1/2=10.5年),中子活化产物60Co(t1/2=5.27年)、63Ni(t1/2=101.2年)和镧系元素(Ln,如152Eu,t1/2=13.3年)具有很强的β/γ放射性和生物毒性。它
学位
石墨炔(Graphdiyne)是继石墨烯(Graphene)之后的一种全新的二维碳纳米材料,它具有和石墨烯相似的π-π共轭结构,并且石墨炔具有大的比表面积,多孔通道结构和优异的电子传输性能等优点,被广泛应用于光/电催化以及新能源领域。此前的实验和理论研究均已报道过石墨炔可以用作电化学催化的反应基底,其中单层石墨炔上大的中心空洞可以为催化剂提供吸附位点并提高催化剂的催化效率。根据文献调研所知,此前对
学位