大跨空间结构静力位移扩展理论研究

来源 :江西理工大学 | 被引量 : 0次 | 上传用户:ln86119
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
目前,国内外有大量的大跨空间结构正在服役。它们的安全服役问题引起广泛关注。大跨空间结构体量非常庞大,即使仅发生局部破坏也会造成严重后果。因此,及时发现此类结构的早期损伤非常重要。利用静、动力测试采集的响应数据来建立相应的损伤识别算法,是监测结构损伤常见的解决思路。由于测试成本的限制,大跨空间结构的现场测试往往只能布置远少于节点数和杆件数的测点。这就导致实测信息非常有限,难以满足大跨空间结构庞大识别规模的求解需求,最终造成此类结构损伤识别的精度较低。因此,需要将少数测点的实测信息扩展至其他非测点来解决测试信息不足的问题。鉴于静力测试直接反映刚度变化且测试精度较高,本文考虑静力测试这一技术手段,围绕大跨空间结构的静力位移扩展进行系统研究。具体工作如下所述。(1)推导了静力位移的近似模态表达式。将动力模态视作自由度空间的一组基向量,则静力位移可以表达为各阶动力模态的线性组合。对于给定荷载,将模态组合系数较大的少数模态定义为贡献模态,则静力位移可以近似表达为少数贡献模态的线性组合。进一步推导发现,在相同荷载作用下,理想结构和具有随机参数偏差的实际结构均可以近似表达为同一组理想结构贡献模态的线性组合。实际结构和理想结构静力位移的变化体现在贡献模态组合系数的变化上。算例表明,静力位移的近似模态表达式是有效的。该表达式仅利用少数贡献模态就能近似表达出结构的静力位移,因此可以将静力位移的监测问题转化为贡献模态组合系数的测量问题,从而为后续研究奠定理论基础。(2)提出一种基于贡献模态的静力位移扩展方法。利用前述静力位移的近似模态表达式,提出一种基于Fisher信息阵的迭代策略来优化测点位置,同时实现贡献模态组合系数的无偏估计。利用贡献模态组合系数的估计值可以快速计算出完整的静力位移,从而实现静力位移的扩展。算例表明:提出的贡献模态法与经典的Guyan法对静力位移的扩展精度相当;当加载点数量大于贡献模态数量时,贡献模态法比Guyan法需要的测点数量更少,这有利于提高现场测试的效率、节约测试成本。(3)提出一种静力位移扩展改进贡献模态法。为了弥补模态截断误差和解决贡献模态数量过多的问题,提出一种将模态补偿策略和模态优化策略相结合的静力位移扩展改进贡献模态法。模态补偿策略将所有的截断模态视作一阶补偿模态,以弥补模态截断误差;模态优化策略通过寻找最佳的虚拟质量分布来减少贡献模态数量。采用三种智能算法来求解模态优化问题。算例表明:粒子群优化算法可以快速找到最佳的虚拟质量分布;在统计意义上,改进贡献模态法所需测点数量比贡献模态法和Guyan法更少,但却具有更高的扩展精度。
其他文献
近几十年来我国经济快速发展的同时,却带来严重的环境污染问题。现在,随着人们的环保意识越来越强,环境保护行动变得刻不容缓。目前环境污染较为严重的水污染问题,而且会严重危害我们的生活。酚类污染物是一种重要水污染物之一,不仅会造成水体中动植物的死亡,还会危害人体的健康。其对人体的毒害作用主要取决于它们的浓度的高低,低浓度时会使细胞变性,影响器官的正常功能。在高浓度时能使蛋白质凝固,而出现器官衰竭而致人死
学位
工业上常用沉淀法-窑炉焙烧法制备稀土氧化物,该工艺存在有能量消耗大,热量利用率低、工艺流程长、生产成本较高、煅烧产品质量不稳定等问题,因此,为了寻求一种绿色、高效、低碳的稀土氧化物制备方法具有重要的理论与现实意义。论文以碳酸镨、碳酸钕和碳酸镨钕为原料,在开展镨钕碳酸盐热分解动力学研究基础上,探索了镨钕氧化物闪速煅烧制备技术,获得较好工艺参数。(1)采用热重-差热(TG-DTA)技术,研究了碳酸镨、
学位
随着科学技术的高速发展,人类对绿色环保的储能技术提出了更高的要求。超级电容器相比于其他储能设备而言,具有功能密度高、充放电速度快和循环寿命长等优势,在新能源汽车、航空航天、国防军工等领域应用潜力巨大。电极材料作为超级电容器的核心部件,对其电化学电容性能起着至关重要的作用。杂原子掺杂多孔碳材料因其导电性优良、微孔介孔丰富、表面化学结构理想,在高性能电极材料上的应用和研究广泛。同时,随着多功能复合材料
学位
介孔纳米材料因具有独特的性质,如高比表面积、表面改性容易、高孔隙率、生物相容性高等优势,被广泛地应用于传感器、催化剂、生物医学甚至环境应用领域,其中介孔NaYF4因其独特的上转换发光特性而备受关注。然而目前报道的介孔上转换亚微球的液相制备方法,实现宏量制备较困难,制备过程会产生大量废液,造成环境污染。我们拟发展一个几乎不用溶剂的新颖方法,以多齿聚合物为诱导纳米晶核自组装的微反应器,建立超高浓度可控
学位
当前,基于化石燃料的传统能源如石油、煤炭等的过度开发及污染物排放,造成严峻的能源危机和环境污染问题,迫使人们将目光转移到可持续绿色能源的开发和利用上来。光催化分解水制氢技术利用丰富的太阳能分解水产生氢气和氧气,是一种缓解当前能源危机和环境污染的理想方案。然而光催化效率低下,不能满足实际应用的需要。因此,作为光催化技术的主要组成,高效的半导体光催化材料成为主要的研究方向。在众多半导体光催化材料中,赤
学位
含氮杂环是许多药物分子和天然产物分子中的核心骨架,开发简单、经济、高效的含氮杂环合成方法具有重要意义。丙炔酰胺是一类重要的有机化学合成前体,常被用作环化反应底物,这可归因于丙炔酰胺的亲核性α-碳和亲电性β-碳。值得关注的是,基于N-芳基丙炔酰胺的去芳构化策略已发展成为构建复杂分子最直接有效的方法之一。目前所报道的工作绝大部分是用于构建螺环,而一次性构筑螺三环化合物的例子较少。此外,经由去(杂)芳构
学位
针对聚乳酸(PLA)热稳定性差,脆性大,结晶速率低等自身缺点,研究人员已通过高含量的聚羟基烷酸酯(PHA)(PHA含量≥30 wt%)与PLA共混,来提高PLA纤维的耐热性和韧性。但上述研究仍有两点不足:第一,当PHA含量>30 wt%时,PLA/PHA共混物的可纺性差,不易进行熔融纺丝;第二,研究人员没有深入探讨PHA对PLA结晶性能的影响。因此,本文主要采用低含量的PHA对PLA进行熔融共混改
学位
开发清洁、高效、低污染的新能源是解决能源短缺与缓解环境压力的重要途径。直接醇类燃料电池由于启动快、效率高、工作条件温和,可作为便携式移动电源,应用于新能源汽车、航空领域等。氢能由于其零污染、来源广、燃烧值大等特性,备受关注。电解水制氢是各种制氢方式中最环保、最高效的方式之一,因而备受青睐。目前醇类燃料电池和电解水析氢的催化剂主要是铂族贵金属催化剂,其原因是非贵金属催化剂的催化活性不能满足当下的需求
学位
稀土是一种重要的战略资源,而在稀土浸出液除杂-富集过程中存在产生放射性废渣,产品纯度低等问题。因此,本项工作合成了一种新型硅胶吸附剂,以去除镁盐浸出液中的杂质元素。开展色谱法研究,为移动床稀土分离技术发展做技术储备。将硅胶吸附剂的高选择性与萃取-沉淀剂的高处理量两者优点相结合,开发出一种镁盐浸出液选择性除杂-富集研究。合成了四种萃取-沉淀剂,研究了其对稀土的富集效果和与杂质离子的选择性,开发了一种
学位
在严苛的具有强腐蚀性和剧烈海水冲刷摩擦的海洋环境下,各种海洋装备及器部件如船舶、海洋自升式平台、柱塞泵、推力轴承等面临着巨大的挑战,在机械装备及部件表面构筑功能防护涂层材料来保证机械装备及部件的长期稳定运行及延长其使用寿命是当前最有效的方法之一。本课题采用多弧离子镀技术成功在316L不锈钢片和单晶硅片上沉积单层Cr Al CN和具有多界面的多层Cr/Cr Al CN复合涂层,同时通过工艺设计湿环境
学位