有序多孔氧化铁电极的制备及光电催化分解水性能探究

来源 :江西理工大学 | 被引量 : 0次 | 上传用户:j2eeweb
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
当前,基于化石燃料的传统能源如石油、煤炭等的过度开发及污染物排放,造成严峻的能源危机和环境污染问题,迫使人们将目光转移到可持续绿色能源的开发和利用上来。光催化分解水制氢技术利用丰富的太阳能分解水产生氢气和氧气,是一种缓解当前能源危机和环境污染的理想方案。然而光催化效率低下,不能满足实际应用的需要。因此,作为光催化技术的主要组成,高效的半导体光催化材料成为主要的研究方向。在众多半导体光催化材料中,赤铁矿(α-Fe2O3)具有可见光吸收的禁带宽度、储量丰富、无毒、稳定性好等优点而备受关注。但α-Fe2O3存在较多的缺陷,如导电性差、空穴扩散距离短、水氧化动力学缓慢等造成光生电子-空穴快速复合,使光电催化性能远低于理论值。针对这些问题,本论文采用模板法在Ti基底上制备有序多孔结构Fe2O3/Ti O2/Ti电极,探讨其光电催化性能及作用机理,并在有序多孔结构氧化铁电极上进一步改性。主要研究内容如下:(1)通过聚苯乙烯(PS)微球在空气-水界面自组装过程形成单层薄膜,以此为模板在纯钛基底上制备的有序多孔Fe2O3/Ti O2/Ti电极在0.5 V vs.Ag/Ag Cl电位下光电流达到1.58m A/cm~2,是无序D-Fe2O3/Ti O2/Ti电极的13.5倍,而单一有序多孔Fe2O3/FTO电极在光照下没有光电流,经过结构和性能测试,证明这是由两个原因共同作用的结果,其一是均匀有序多孔纳米结构增强了对光的捕捉能力,减少电荷传递阻力,降低光生载流子复合率;其二是金属Ti在退火过程中与Fe2O3形成Fe2O3/TiO2异质结,异质结的形成有利于提高Fe2O3电极导电性,增大载流子密度,降低电荷传递阻力,实现光生载流子的有效分离,改善材料光吸收性能,从而提高光电催化水分解效率。(2)对有序多孔Fe2O3/TiO2/Ti电极进行改性,包括负载Au纳米粒子、掺杂Ce元素和表面电沉积Co助催化剂。光电催化性能测试结果表明,贵金属Au纳米颗粒的负载有助于提高Fe2O3材料导电性,降低电荷传输阻力,使光电流起始电位负移,利于光生电子和空穴的有效分离,提高光电催化性能;Ce元素掺杂有利于提升光电化学性能,2%的掺杂浓度的光电流密度提升27%;电极表面电沉积Co助催化剂,降低了界面电荷传递阻力,提高光生载流子的有效分离,改善了Fe2O3/Ti O2/Ti电极的光电催化性能,有效扩宽光谱响应区间至600 nm以上。
其他文献
将可再生的生物质作为原料替代石油生产高附加值化学品和燃料,不仅可以缓解对石油资源的过分依赖,而且能够大幅度减少污染物和温室气体的排放。木质素是自然界中含量仅次于纤维素的第二大生物质资源,经快速热解可直接得到酚类化合物生物油。然而,酚类液体产物存在成分复杂、含氧量高和热值低等缺点,这在一定程度上限制了其广泛应用。通过催化加氢及加氢脱氧技术将其转化为环己醇和环己烷等高附加值化合物,是木质素酚类化合物高
学位
氢能作为一种高能量密度(122 k J/g)的清洁可再生能源,燃烧只产生水,不带来碳排放以及环境污染,正被世界各国所重视。在多种制氢方法中,利用太阳能光催化分解水制氢是一种极具前景的技术。然而,如何制备高效、低成本的光催化剂成为制约光催化制氢发展的关键问题。相比于无机半导体,有机半导体具有制备方法多样、能带结构可调以及光吸收范围宽泛等优点,受到研究者的广泛关注。目前,用于合成共轭聚合物的高效共聚单
学位
微塑料长期在环境中存在且难以降解,是环境污染中亟需解决的问题,而且其作为载体对水中污染物具有富集和迁移的作用,从而形成复合污染效应。环境中微塑料老化后,其表面形貌、表面官能团、亲/疏水性、结晶度等物化特征会发生变化,进而影响其与水中污染物的吸附/解吸行为。然而,现有的研究主要集中在不可生物降解微塑料与污染物的吸附行为研究,而忽略了可生物降解微塑料与污染物共存时的生态毒理和环境风险。因此,本文选取典
学位
近年来,分子铁介电可逆相变材料因其设计合理、机械柔韧性好、结构多样性、重量轻、环境友好和易于合成等优点而备受关注。对这类材料的研究兴趣不仅仅在于上述优点,而且还在于它们在能量与数据存储器、信号处理器、传感器、驱动器、可切换介电器件和非线性光学器件等众多领域的前瞻性技术应用。本论文通过溶液法成功地合成了八例高温相变的多功能型铁介电晶体,通过一系列丰富的表征手段,对化合物的结构、热力学性质、光学性能以
学位
心肌收缩力调节器(CCM)是应用于心力衰竭患者的一种新的治疗方法,其通过调节心肌细胞中钙离子的浓度以及调节自主神经功能来增强心肌收缩力,从而改善心力衰竭患者的症状、运动耐受性、生活质量、心肌收缩力以及心室重塑,并且不增加心肌耗氧量,CCM尤其适用于LVEF为35%~45%的患者。CCM的广泛应用可以给心力衰竭患者带来新的希望。该文对CCM的作用机制、适用人群、临床疗效及安全性进行综述,以期为临床医
期刊
光催化技术是直接利用太阳能来解决能源危机和环境问题的重要手段,目前开发高效的光催化剂是从理论研究上推进光催化反应进而实现实际应用的重要任务。具有窄带隙的金属硫化物半导体可在可见光下响应,但是其易光腐蚀的特性极大地限制了其光催化的应用。为了减少硫化物的光腐蚀现象,提高光生电子和空穴的分离效率,本论文通过稀土离子Yb3+/Er3+共掺杂和构建异质结来调控镉基硫化物,具体内容如下:1.采用水热法将Yb3
学位
近几十年来我国经济快速发展的同时,却带来严重的环境污染问题。现在,随着人们的环保意识越来越强,环境保护行动变得刻不容缓。目前环境污染较为严重的水污染问题,而且会严重危害我们的生活。酚类污染物是一种重要水污染物之一,不仅会造成水体中动植物的死亡,还会危害人体的健康。其对人体的毒害作用主要取决于它们的浓度的高低,低浓度时会使细胞变性,影响器官的正常功能。在高浓度时能使蛋白质凝固,而出现器官衰竭而致人死
学位
工业上常用沉淀法-窑炉焙烧法制备稀土氧化物,该工艺存在有能量消耗大,热量利用率低、工艺流程长、生产成本较高、煅烧产品质量不稳定等问题,因此,为了寻求一种绿色、高效、低碳的稀土氧化物制备方法具有重要的理论与现实意义。论文以碳酸镨、碳酸钕和碳酸镨钕为原料,在开展镨钕碳酸盐热分解动力学研究基础上,探索了镨钕氧化物闪速煅烧制备技术,获得较好工艺参数。(1)采用热重-差热(TG-DTA)技术,研究了碳酸镨、
学位
随着科学技术的高速发展,人类对绿色环保的储能技术提出了更高的要求。超级电容器相比于其他储能设备而言,具有功能密度高、充放电速度快和循环寿命长等优势,在新能源汽车、航空航天、国防军工等领域应用潜力巨大。电极材料作为超级电容器的核心部件,对其电化学电容性能起着至关重要的作用。杂原子掺杂多孔碳材料因其导电性优良、微孔介孔丰富、表面化学结构理想,在高性能电极材料上的应用和研究广泛。同时,随着多功能复合材料
学位
介孔纳米材料因具有独特的性质,如高比表面积、表面改性容易、高孔隙率、生物相容性高等优势,被广泛地应用于传感器、催化剂、生物医学甚至环境应用领域,其中介孔NaYF4因其独特的上转换发光特性而备受关注。然而目前报道的介孔上转换亚微球的液相制备方法,实现宏量制备较困难,制备过程会产生大量废液,造成环境污染。我们拟发展一个几乎不用溶剂的新颖方法,以多齿聚合物为诱导纳米晶核自组装的微反应器,建立超高浓度可控
学位