伪随机调制连续波钠测温测风激光雷达

来源 :中国科学技术大学 | 被引量 : 0次 | 上传用户:lvzhenzhuo112
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
589nm超窄带钠荧光激光雷达系统能够高精度探测中间层顶区域(80-105km)的钠原子数密度,大气温度和风场,对于研究该区域大气动力学具有重要的价值。但是,目前常见的染料脉冲式窄带钠测温测风激光雷达系统,由于其体积和功耗较大,操作复杂且不稳定,因此仅适合在实验室条件下部署。尽管最新的全固态超窄带脉冲钠激光雷达解决了系统全固态和运行稳定性的问题,但是由于其系统复杂且功耗大,很难在短期内实现小型化。为了实现机载和星载探测的需求,研制同时具有超窄带宽、全固态、小体积、低功耗和自动化的窄带钠激光雷达系统,迫在眉睫。近几年全固态光纤激光器快速发展,使其在具有极佳稳定性的同时能输出高功率连续波激光,为窄带钠激光雷达系统的发射光源提供了新的选择。针对目前钠激光雷达的研究现状,本论文在对流层气溶胶探测的连续波(CW)激光雷达基础上,采用了创新性的原理和技术,使用伪随机编码调制的连续波(PMCW,Pseudo-random Modulation Continuous-Wave)激光作为光源,研制了国际首台PMCW钠测温测风激光雷达原理样机,并开展了数日观测验证实验。结果显示该系统能够准确可靠的探测中间层顶钠原子数密度、大气温度和风速。本论文的主要研究内容和创新点如下:(1)深入研究了 PMCW钠激光雷达的探测原理。选用M序列作为伪随机编码,实现了连续波激光雷达探测中间层顶区域的距离分辨。针对伪随机调制中剩余光能量损失问题,研究了剩余光序列的自相关特性,创新性的提出了利用剩余光进行探测的独特方法,首次实现PMCW激光雷达发射光源的完全利用。将PMCW激光雷达探测原理与钠原子超精细荧光光谱反演温度与风场的方法相结合,设计了 PMCW钠激光雷达激光调制、发射和接收信号的仿真模拟,并分析了系统信噪比,验证了 PMCW钠激光雷达研制的可行性。(2)研制了国际首台PMCW钠测温测风激光雷达原理样机,并突破了一系列钠激光雷达探测技术:连续波M序列编码主光和剩余光同时用于探测的技术;利用激光发射自动准直系统,通过离轴结构实现近地面强回波信号抑制的技术;基于滤光片优化的高效率后继光路系统和时序高度同步的采集反演技术等。该原理样机具有全固态、小型化、低功耗、高能效、以及稳定全自动化的特点。(3)基于PMCW钠激光雷达开展了中间层顶区域大气温度和风场的探测,其探测结果与卫星和附近流星雷达同时观测的结果具有较好的一致性。该系统探测的温度和风场中具有明显的大气潮汐波和重力波扰动,且与流星雷达观测一致。这些均表明该PMCW钠激光雷达的探测结果是准确可靠的。
其他文献
分子具有电子态、自旋态、振动态等多维度的内禀参量,这些不同的内禀参量决定了分子的特异性质和丰富功能。在实际环境中,分子间或分子衬底材料的界面相互作用、以及外场的作用也会导致这些参量的变化。全局性、高精度表征分子多维度的内禀参量,对于基元化学反应理解、材料合成、分子电子学、量子信息等领域有着十分重要的科学意义和应用价值。如何实现分子多内禀参量的全局表征,认识环境和外场作用下内禀参量的动态演化过程,是
近年来,双离子电池作为一种新型储能器件,以其工作电压高、正极材料相对廉价易得等特点而备受研究者的关注。然而,电解液中阴、阳离子分别担当正、负极反应载流子的储能机制使得双离子电池的正极反应迥异于其他传统电池;而最为常见的石墨正极所拥有的高反应电势对电解液(质)的耐氧化性也提出了极为苛刻的要求。在有机溶剂电解液中,阴离子的溶剂化效应更增强了石墨正极储能行为的复杂性。目前来看,还有以下关键问题需要进一步
由脱合金腐蚀制备的纳米多孔金属(nanoporous metal)具有开放的三维网络结构、纳米级的孔棱和孔洞、巨大的比表面积以及宏观(毫米级别以上)的材料尺寸,表现出许多优异的力学、物理和化学性质,因此纳米多孔金属的形成机理、结构特征、性能和应用等方面都已经获得研究者们的广泛关注。各种重要的实际应用都对纳米多孔金属的力学性能提出了要求,因此纳米多孔金属的力学行为一直是本领域的研究热点之一。目前研究
激光增材制造(Laser additive manufacturing,LAM)是能够实现复杂零件的高精度和高性能一体化成形的新兴快速成形技术,其中常见的激光熔化沉积(Laser melting deposition,LMD)技术是通过大功率高能激光束应用粉末或线材在基板上进行快速凝固沉积,以实现复杂构件的制造,并在航空航天、医疗器械等领域已经实现应用。对于低合金钢的LMD成形来说,成形组织结构及
多波段巡天表明,纤维状分子云在冷暗星际介质中随处可见。在大的尺度上,超过100 pc的大尺度纤维状分子云被人们视作银河系旋臂的“骨骼”,撑起整个银河系;在小的尺度上,纤维状结构连接了分子云的坍缩到最终碎化而形成致密云核的过程。正因为此,纤维状分子云是当前天体物理研究的一个前沿热点。基于紫金山天文台(PMO)13.7 m毫米波望远镜“银河画卷”巡天数据,本论文瞄准大尺度纤维状结构的动力学性质,对第二
微粒,通常指直径在1到1000 μm范围内的粒子。微粒因其优秀的结构和功能特性,在科学研究和工程应用中得到了广泛的关注。经过数十年的发展,微粒被广泛用于各个领域,如药物递送和防伪等。另外,微粒的组装结构也被用于如组织工程、精准给药、传感器和致动器等方面。用于操控微粒沉积组装的技术有光镊、磁泳、电泳与介电泳、声波操控以及静电雾化等。其中,静电雾化技术不仅可以制备多种不同形貌的微粒,还可以控制微粒运动
中国共产党的十九大报告指出,当前中国社会主要矛盾已经转化为“人民日益增长的美好生活需要和不平衡不充分的发展之间的矛盾”。对位于中国西南边陲的云南省来说,自国家实施西部大开发以来,各区域经济发展不平衡不充分程度有所缓解,但区域经济协调发展水平低的问题没得到根本的解决。因区域经济协调发展不仅是重大的经济问题,亦是重大的政治问题、社会问题和国家安全问题,事关国家和地区的长治久安,云南省对区域经济协调发展
氮化物涂层具有较高的硬度、优良的耐磨性以及良好的化学稳定性,在机械加工、航空航天、汽车工业、芯片制造等领域得到了广泛的应用。如何优化氮化物涂层的成分和结构,获得高硬度、韧性、热稳定性和高温抗氧化性能的综合指标,一直以来是研究人员关注的科学问题。本论文制备了 Si改性TiAlN和CrAlN涂层,用于γ-TiAl基合金的高温抗氧化防护,通过Si改性,不仅在氧化初期促进了涂层表面保护性氧化膜的形成,而且
随着现代经济水平的迅猛发展和人们物质生活质量的日益提高,不可再生资源的枯竭、生态环境的破坏和污染已成为制约人类发展的严重问题,特别是水资源严重匮乏、水质污染严峻越来越受到人们的关注。光催化材料可以有效地应用于水中芳香类有机污染物、有机染料或致病微生物的光催化降解和净化,从而为水污染的治理提供了更有利的方法。目前,在水体净化应用上,光催化技术主要存在吸收光子能量时太阳光能量利用率低、光催化传输过程中
TiAl合金具有低的密度、高的弹性模量和优异的高温性能,是一类在航空、航天领域具有应用前景的轻型高温结构材料。然而,TiAl合金在800℃以上生成的是TiO2和A12O3的混合氧化膜。该混合氧化膜疏松多孔且极易发生剥落,无法阻挡氧的侵蚀。因此,TiAl合金在高温环境下应用时需施加防护涂层提高其抗氧化性能。扩散Al涂层在高温下表面生成以Al2O3为主的氧化膜,可以阻挡氧的进一步侵蚀,在一定程度上提高