介观体系中的电子自旋输运及隧穿磁阻效应

来源 :山西大学 | 被引量 : 3次 | 上传用户:jimmycjriyue
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
自旋相关的量子输运是自旋电子学中的重要研究内容。本文首先简单介绍了自旋电子学的兴起和发展,回顾了自旋电子在介观尺寸下的一些典型的输运特性,对隧穿磁电阻效应、Rashba和Dresselhaus自旋轨道耦合相互作用以及量子隧穿时间的一些定义等进行了简要描述。我们选取了具有重要应用价值和基础理论研究意义的半导体异质结结构(铁磁/半导体/铁磁异质结)以及介观AC环作为研究对象,采用一维波导理论的方法对其中的电子自旋极化输运现象和量子隧穿时间进行了较为细致的研究。  (1)考虑界面势垒以及Rashba和Dresselhaus两种自旋轨道耦合同时存在时,研究了自旋极化电子通过铁磁体/半导体/铁磁体(F/S/F)异质结引起的自旋翻转和隧穿磁电阻效应。结果显示在一定的铁磁/半导体界面势垒高度时可以实现隧穿电子的自旋翻转,而且电子的透射几率随自旋轨道耦合强度的变化成现出单一的共振窄峰,Rashba项不仅可以导致更大的磁电阻而且可以使得通过改变两端铁磁体磁化方向的夹角实现磁电阻的正负转变,并使得磁电阻的绝对值关于θ=π不再对称。  (2)比较研究了铁磁体/半导体/铁磁体异质结中存在和不存在自旋翻转时,自旋极化电子的隧穿时间。当异质结中内没有自旋翻转效应时,随着半导体长度的增加,自旋电子的隧穿时间并不是线性的增加,而是呈现了波状的增长过程。而当考虑自旋翻转效应时,自旋电子的隧穿时间随着半导体长度的变化会出现剧烈的振荡现象,而且会在某些区域出现下降趋势。  (3)我们还研究了自旋极化电子通过两端连接铁磁电极的介观AC环的情况,发现可以通过调节电场的大小和方向来控制不同自旋电子的透射几率。在大的电场倾角情况下,隧穿磁电阻TMR随电场大小α的增大逐渐由正值变化为负值。而如果固定电场大小,隧穿磁电阻随着电场倾角x的变化可以出现正负值的交替变换且关于x=π是对称分布的。  
其他文献
从20世纪30年代人们就开始探索实现光致旋转的方法。光镊出现后,利用光镊来研究光致旋转得到了人们的关注。光致旋转可实现对微粒的角向操纵,这是在光镊对微粒的三维操作基础上
论文的前两章为综述部分,分别对混沌和哈密顿系统的一些基本特征和常用的分析方法进行了介绍.在第三章中我们首先对测度同步的概念及特征加以介绍和分析,然后利用出现测度同
该论文所作的工作主要有四部分:第一部分详尽地叙述了光全息术的发展历史,介绍了全息图的记录与再现的物理过程并进行了几何分析,用简单的数学公式表示全息图的形成过程.第二
本研究报告包含了作者在站期间的主要研究成果.其内容大致可分为两部分.第一部分由前三章构成,后三章组成本报告的第二部分.第一章作者对当前Bose-Einstein凝聚现象的研究,给
高相干性是第三代光源和自由电子激光的一个重要特点,被广泛应用于不同科研领域中,包括相干衍射成像、X射线干涉光刻、X射线光子关联谱以及X射线全息成像等。同步辐射在基础和
玻色—爱因斯坦凝聚(BEC)是量子统计的结果,与超流现象密切相关。稀薄碱金属原子气体的BEC的实验实现使得此类现象的研究摆脱了理论与实验结果不能精确比较的局面。作为超流体
该文介绍了生物组织的非线性光学二次谐波层析成像技术,它是一种新的对生物组织的结构进行非侵入性探测的方法.根据耦合波方程,结合生物组织的高散射性,对生物组织二次谐波进
该文系统地研究了混合气体(Cl/Xe)介质阻挡放电(DBD)中气体、电源特性及电极结构和冷却方式等因素对放电特征、准分子XeCl主辐射(308nm)强度及相对转换效率的影响.气体Cl/Xe
该文介绍了一种新方法,即大焦深成像新技术,该技术通过在光学系统光路中加入一个特殊设计的非球面掩膜板,对非相干波前进行编码使光学系统的MTF在一定的范围内对离焦变化不敏
对超冷原子气体凝聚的研究是近年来凝聚态物理和原子物理的热点之一。Feshbach共振技术可以很容易地把原子之间的弱作用变为强作用,这使得人们可以在量子费米气体的BCS-BEC过