石墨烯超润滑以及石墨烯复合材料摩擦学性能研究

来源 :大连理工大学 | 被引量 : 0次 | 上传用户:ghostlei
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
摩擦磨损造成了全球范围内三分之一的能源消耗以及百分之八十的机械部件损耗。因此,如何有效地降低相对运动界面间的摩擦磨损以及提高机械部件的摩擦学性能是亟待解决的问题。超润滑作为摩擦力几乎为零的摩擦状态是在全球能源与资源短缺的背景下实现可持续发展的重要手段。但现有的超润滑技术仅局限在微纳尺度以及特定的气氛环境才可以实现,始终无法在大气宏观条件下有所突破。其次,聚合物复合材料因其重量轻、强度高以及优良的化学稳定性等特征在某些高精度高性能运动部件领域得到了越来越广的应用。但目前增强材料对聚合物摩擦学性能的增强作用仍无法达到理想效果。石墨烯因其高的比表面积、优异的力学以及摩擦学性能,在实现宏观超润滑以及增强聚合物摩擦学性能方面具有巨大的优势。本论文使用PECVD方法在石英片基底、石英对磨球以及粒径8 μm二氧化硅微球表面生长石墨烯涂层。使用自组装微力摩擦磨损试验机测试三者组成的摩擦系统的摩擦学性能。测试结果表明,在大气条件下,施加法向压力35 mN,滑动速度为0.2 mm/s时,摩擦系数可达到0.0075。首次在大气条件下实现宏观超润滑摩擦状态。经过第一性原理以及分子动力学模拟得出此摩擦系统实现宏观超润滑的原因是由于二氧化硅微球的加入,降低了接触区域内石墨烯层的应力,保证了石墨烯涂层不被破坏而造成隆起褶皱导致额外能量耗散。其次,本论文使用机械共混法制备石墨烯环氧复合材料,结果表明,当添加的石墨烯质量分数为5 wt.%时,在法向载荷为10 N条件下,石墨烯环氧复材的磨损率相较于纯环氧树脂增强了 628倍。同时,首次使用分子动力学构建了多石墨烯碎片随机分散的环氧树脂模型,并模拟了其与Fe原子对磨针尖的摩擦过程。结果表明,其摩擦性能提高的原因是从基体剥离出的石墨烯薄片在摩擦过程中向表面迁移形成一层润滑膜。最后,本论文采用改良的真空抽滤法制备了定向石墨烯环氧复合材料。摩擦试验结果表明,定向排列在环氧基体中的石墨烯更容易在摩擦过程中形成致密的润滑膜,从而显著地降低了石墨烯环氧复材的摩擦系数。且在法向载荷低于8N的条件下,具有比随机排列石墨烯环氧复材更低的磨损率。本论文研究成果有助于超润滑技术在宏观尺度的应用,以及设计和制造基于石墨烯聚合物复合材料的高性能器件。
其他文献
增材制造技术具有近净成形、成形零件复杂度高等特点,是当前复杂精密金属零件一次性整体成形最具前景的应用技术之一。它突破了传统制造技术对结构尺寸和复杂程度的限制,为大型复杂整体轻量化结构的制造提供了变革性技术途径。目前,应用于增材制造的金属材料主要包括Ti合金、Al合金、Ni基高温合金等。其中,Ti合金因具有高比强度、高比刚度、优异的成形性、良好的热稳定性和断裂韧性等优异的综合性能,在增材制造技术的用
学位
连铸坯裂纹的形成源于钢液凝固过程中的传热、流动和收缩等复杂行为,不仅与钢种的凝固特性及高温力学性能有着密切的联系,同时受铸坯的非均匀传热、收缩和摩擦等机械作用的影响。因此探索铸坯裂纹的形成机理及影响因素,对稳定和提升连铸坯质量具有重要意义。作为连铸工艺优化和开发的重要手段,以有限元法为代表的基于网格的模拟方法在调控复杂冶金过程、稳定和提升连铸坯质量等方面发挥了重要作用。然而,基于网格的模拟方法需要
学位
在社会生产生活中,摩擦磨损造成的能源损耗约占全部能源消耗的23%,其中80%以上的机械零部件的失效是摩擦磨损导致,导致的经济损失约占每年GDP的2%~7%。如果能大幅降低接触界面间的摩擦,将大大减少机器磨损、能源损耗及经济损失。目前,接触界面摩擦趋于“零”的超润滑被认为是减少摩擦损耗的重要途径之一。石墨烯是现有的最薄固体润滑材料,因其优异的力学、摩擦学性能而成为超润滑接触界面的理想润滑剂。然而,现
学位
行人再识别技术旨在实现对特定人物的跨设备检索,能够解决不同监控设备之间的拍摄盲区问题。近年来,该技术已应用于安全监控、刑侦探案、智慧出行和智能交通等多个领域,具有广泛的应用前景。在该任务研究初期,大部分工作采用传统机器学习算法,面向小规模训练数据,力求学习一个分辨能力较强的再识别模型。随着大数据时代到来,研究者倾向采用深度学习算法,利用大量数据训练模型。然而,由于行人出行的随机性,行人再识别任务的
学位
我国城市地铁发展迅速,地铁结构周围土壤和地下水中往往存在腐蚀性介质,尤其是盐渍土地区或者沿海地区,土壤和地下水中侵蚀性离子浓度较高,这严重威胁地铁混凝土的耐久性。同时,地铁所采用的直流牵引供电模式以及轨地之间绝缘性能的下降,往往会导致“杂散电流”的产生。因此,本文针对地铁混凝土结构同时遭受杂散电流与侵蚀性离子的作用而引发的水泥基材料耐久性问题展开了研究。首先,研究了杂散电流与侵蚀性离子耦合作用下水
学位
具有带隙特性的机械超材料,可在特定频率范围内实现弹性波的有效衰减、隔断入射波的传播,可作为新的技术途径应用于工程装备的振动抑制。而有效抑制低频宽带振动是工程装备中亟需突破的瓶颈,机械超材料的低频宽带振动抑制在工程装备中具有十分重要的应用前景。在尺寸和质量约束下,机械超材料难以同时实现低频、宽带振动抑制,这成为制约机械超材料隔振应用的关键技术难题。作为一种易于制造且高性能的结构性材料,穿孔板型机械超
学位
蜂窝夹层构件具有极高的比强度和比刚度、优异的抗冲击、减振、消声、透波、隔热等性能,大量应用于航空航天领域。蜂窝夹层构件由蜂窝芯与上下面板粘接而成,为满足蜂窝夹层构件的制造要求,需要对蜂窝芯的粘接表面进行加工。目前应用较多的蜂窝芯是芳纶蜂窝芯。由于芳纶蜂窝为孔格结构的弱刚度复合材料,采用传统的高速铣削方法加工时,容易产生孔格变形、毛刺、撕裂等加工损伤,蜂窝芯的加工质量不易保证,影响蜂窝夹层构件的性能
学位
组合矩阵是组合学中的基本研究对象.矩阵的全正性和渐近正态性是两个重要的性质.本文研究组合矩阵的全正性和渐近正态性.主要内容分为以下三个部分.第一部分研究进位矩阵的全正性.进位矩阵产生于随机过程中的进位马尔科夫链,是进位马尔科夫链的转移概率矩阵.Diaconis和Fulman猜想进位矩阵是全正的.本部分证明了 Diaconis和Fulman的猜想.进位矩阵是有限矩阵,将进位矩阵嵌入到一个无限的广义H
学位
粗粒土具有压实性能好、透水性强、取材方便等诸多优点,已广泛应用于土木、水利、交通等工程领域。以粗粒土作为主要建筑材料的土石坝、土质高边坡、防波堤、护岸、高速公路路基与高铁路基等工程,在地震或其它动力荷载作用下的安全性与粗粒土的动力特性存在着密切的关系。因此,精准把握粗粒土的动力特性具有非常重要的工程意义。在粗粒土的动力特性研究中,动剪切模量随剪应变的变化规律是土工建筑物等重大工程结构抗震设计、分析
学位
随着信息技术的不断发展,智能手机、笔记本电脑、平板电脑、智能音箱、智慧屏等智能终端产品日益普及,并得到广泛应用。这些终端设备均配备有麦克风或麦克风阵列,利用这些设备,容易构建成分布式麦克风网络,并可用于语音增强、声源定位、说话人跟踪等语音处理任务。与传统的麦克风阵列相比,分布式麦克风网络具有灵活的拓扑结构、大范围的空间覆盖率以及分布式数据处理能力,并在视频会议系统、智能监控系统、人机交互系统、网络
学位