金/半导体杂化结构制备及界面结构对热电子效率影响的研究

来源 :陕西师范大学 | 被引量 : 0次 | 上传用户:haidong711
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
局域表面等离激元共振(Localized surface plasmon resonance,LSPR)指的是金属(或高掺杂半导体)纳米结构中的自由电子在外部电磁场的激发下发生的集体振荡。在被激发后的几飞秒至十几飞秒的时间内,LSPR以辐射或非辐射的方式快速衰减,其中通过朗道阻尼的非辐射衰减可以激发出高能的热电子。与传统的半导体相比,LSPR金属对光的响应波长可以通过调控其形貌、尺寸等来调控,因此,LSPR热电子最大的优势是其产生不受禁带宽度的限制。将LSPR金属与半导体相结合,LSPR热电子可以转移到半导体,形成光电流或参与化学反应,从而用于光伏、光催化等领域。然而,目前基于LSPR热电子的器件效率普遍不高,导致其无法得到实际应用,这主要是因为热电子的效率不高。部分研究表明,热电子效率与金属/半导体界面有关,但目前界面对热电子效率的影响机制还不明确。根据已报道的研究,Au/CdSe与Au/CdS的热电子效率存在较大差异,因此,本论文制备了Au/CdSe及Au/CdS杂化结构,从实验上对两者的热电子效率进行了研究,同时通过理论计算对其界面电子结构进行了研究。通过关联热电子效率与界面结构,阐明了界面对热电子效率的影响机制。具体研究内容如下:1.选用共振波长在可见光区及近红外区可调并且能够产生较强局域场增强的金纳米双锥来研究热电子效率,对金纳米双锥的制备过程进行了研究。利用种子生长法合成了金纳米双锥,经过银再生长、排空相互作用诱导的自分离、银刻蚀等过程对合成的金纳米双锥进行了提纯。提纯后的金纳米双锥具有高度的形状及尺寸均一性。通过调控种子溶液与生长溶液的体积比,实现了对金纳米双锥纵向LSPR波长的调控,其纵向LSPR波长可从650 nm调控800 nm左右。2.制备了Au/CdSe杂化结构并研究了包覆形貌对热电子效率的影响。在金纳米双锥的基础上,经过包银、硒化、阳离子交换几步制备了Au/CdSe杂化结构。通过调控硒化过程中硒前驱体的滴加速度及用量,实现了CdSe在金纳米双锥外的全包覆及两端的选择性包覆。进而研究了两种形貌的Au/CdSe的热电子效率,实验结果表明选择性包覆的结构具有更高的效率。这主要是由于金纳米双锥两端具有显著的电磁场增强效应,有利于激发热电子,而选择性包覆的结构可以充分利用两端的电磁场。3.研究了界面结构对热电子效率的影响。制备了Au/CdS杂化结构并研究了形貌相同的Au/CdS和Au/CdSe的热电子效率。实验结果表明,Au/CdSe较Au/CdS效率更高。利用密度泛函理论(DFT)计算对Au/CdS和Au/CdSe的界面电子结构进行了研究,揭示了两者热电子效率差异的原因。由于Au-S键较Au-Se键更强,导致Au/CdS界面处的电子的局域化程度更高,因而对于Au/CdSe结构,热电子更容易转移,效率更高。
其他文献
随着肥胖及糖尿病的全球大流行,糖脂代谢紊乱作为代谢性疾病的典型特征已成为威胁人类健康的首要因素。长期的糖脂代谢紊乱不仅会引起胰岛素抵抗,导致肠道菌群失调,还会损伤中枢神经系统进而造成认知行为障碍。但是目前针对糖脂代谢紊乱诱导的认知功能障碍尚无高效、天然、安全的治疗药物且其发病机制也尚未得到完全阐明。近年来,多项研究已证实根皮苷作为营养干预成分可预防和缓解糖脂代谢紊乱已得到了。但是认知功能障碍作为糖
学位
高血压是一项严重危害人体健康的心血管疾病,而且患病率逐年攀升。目前临床治疗上人工合成用于防治高血压的药品如卡托普利、依那普利等对临床治疗降压疗效较为显著,但会产生副作用,如咳嗽、血压偏低等。其中,血管紧张素转化酶抑制剂(ACE抑制剂)类药物应用最普遍,是目前治疗高血压的首选药物。血管紧张素转化酶(Angiotensin-converting enzyme,ACE)主要作用于人体升压系统,ACE抑制
学位
随着经济的不断发展和人际交往关系的扩大,人们对酒的需求量不断增加,酒精性肝损伤(alcohol-induced liver injury,ALI)在人群中的发生率也逐渐增加。因过量摄入酒精而引发的一系列问题严重威胁人类健康,尤其是对肝脏的毒性作用。但目前防治ALI药物较少,而植物多糖作为一种天然植物提取物,可通过改善肝功能、提高抗氧化能力、调节乙醇代谢、减轻炎症反应等多种途径发挥保肝作用。充分开发
学位
能源短缺和环境污染等问题促使人们寻求绿色、可再生的能源体系,目前已经开发了各种绿色、安全、可持续的新能源体系。与此同时,如何安全高效地存储这些新型能源是人类面临的新难题。在各种储能方式中,锂离子二次电池因其高的能量密度和长的循环寿命等特点受到了广泛的关注。商用的锂离子电池以锂的金属磷酸盐或金属氧化物作为正极材料,石墨化的碳材料作为负极材料。目前的电化学技术已经能够达到这些电极材料的理论容量,但是仍
学位
福氏志贺菌(Shigella flexneri,Sh.flexneri)是一种常见且具有传染性的致病菌,常在食品和食品加工环境中发现(如,鲜切水果,蔬菜,肉类和废水)。目前,由于细菌耐药性基因的传播,寻找新型抗菌剂十分必要。芳樟醇是一种数量庞大天然植物提取物,具有广泛的杀菌、抗炎等特性,将它作为天然抗菌剂用于控制食品中的致病菌具有潜在的应用价值。本研究以细胞膜和DNA为靶点探究芳樟醇对福氏志贺菌的
学位
近几年,有机-无机杂化钙钛矿材料因其具有较大的原子序数、可调的带隙、较大的载流子迁移率-寿命乘积、简单和低成本的制备方法等优势而被作为辐射探测器的新兴材料,受到来自世界各地的研究者的广泛关注,其中作为典型的有机-无机杂化钙钛矿材料的MAPb I3备受关注。目前基于MAPb I3单晶的X射线探测器的灵敏度已达到5.2×10~6μC Gy-1air cm-2,检测限已低于1 n Gyair s-1,这
学位
电解水产氢是一种清洁高效的产氢方法,但其装置通常存在阴阳极气体交叉危险、阳极析氧反应过电位大等缺点。利用阳极小分子氧化反应取代析氧反应可达成减少能耗等目的。氨氧化和甲酸盐氧化凭借较低的氧化电压成为阳极反应的理想选择。此外,电解水研究中,改进铂(Pt)、钯(Pd)基材料的电催化性能对电化学制氢规模化意义重大。对Pt、Pd基催化剂进行尺寸、形貌以及组分调控以提升催化性能已经成为热门研究课题。本论文以提
学位
<正>陶行知先生认为:"创造是一个民族生生不息的活力,是一个民族文化中的精髓。所谓创造教育,即是培养民族活力的教育,是培养学生"独出心裁"能力的教育。"小班幼儿是幼儿园年龄段中能力相对弱一些的孩子,他们的创造性具有不受控制、自发性强的特点,是一种自发的创造,一种原发性的过程。而3~6岁作为幼儿创造性培养的关键期,不容错失。《幼儿园教育指导纲要》指出:"幼儿园的教育要"以游戏为基本活动,寓教育于各项
期刊
擀面皮(wheat starch-based noodle,WSN)是我国西北地区特色风味小吃,质地柔软,口感筋道,风味独特,深受当地各类消费人群青睐。擀面皮是以小麦面粉为原料,经过和面、洗面、发酵和熟化四道工序制成。发酵是擀面皮生产的关键步骤,不仅影响擀面皮的风味,还会通过影响小麦淀粉的结构和理化性质对其质地和老化产生影响,但此方面的研究未见系统报道。为此,本文首先探究了发酵过程生产擀面皮的小麦
学位
近年来,随着人们生活水平提高,人们对便携式可穿戴电子器件的需求逐渐增加。超级电容器除了具备优异的电化学性能外,还应兼具良好的机械性能以满足未来市场需求。而创新设计和制备高性能柔性电极对发展超级电容器至关重要。聚(3,4-乙烯二氧噻吩)(PEDOT)因其独特的物理特性、出色的导电性和优异的循环稳定性,成为近年来备受关注的导电聚合物。目前许多研究都致力于PEDOT复合材料的制备,以增强基底材料的电容性
学位