直接甲醇固体氧化物燃料电池防积碳研究

来源 :江苏科技大学 | 被引量 : 0次 | 上传用户:lftobto
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在“双碳”背景下,我国已将燃料电池技术列入十四五能源领域科技创新规划中。氢气作为燃料电池的理想燃料在制备、运输和储存方面都面临着许多挑战。与氢气相比,甲醇具有来源广泛及储存运输方便的优势。因而直接使用甲醇为燃料的固体氧化物燃料电池(简称甲醇SOFC)受到了各国学者越来越多的关注。然而,积碳问题阻碍了甲醇SOFC的发展。本文针对直接甲醇管式SOFC的积碳问题设计了一种多孔内管结构,并对其进行了详细的探讨。本文的主要内容如下:(1)首先分析了传统管式SOFC在直接使用甲醇燃料时的积碳原因以及积碳区域,发现反应积碳活性最强,阳极顶部为积碳最严重区域,最大积碳活性为745681。针对传统管式SOFC积碳原因,本文提出了多孔内管管式SOFC。部分甲醇直接通过多孔结构进入阳极参与反应,进而降低了阳极顶部甲醇浓度及CO分压,并提升该区域的温度,所以有效缓解该区域积碳活性过高的问题,最大积碳活性降低了99%。(2)虽然甲醇热解不产生积碳,但是甲醇热解生成的CO会引起积碳。因此可以调整甲醇在阳极表面的分布改变SOFC阳极积碳活性。很显然,多孔结构孔隙率、内管壁厚、内管内径、多孔结构长度对甲醇在阳极表面的分布具有重要影响。因此本文分别研究了多孔结构孔隙率、内管壁厚、内管内径、多孔结构长度对积碳活性和电池性能的影响,然后采用正交实验法对以上参数进行了组合优化,寻找出了最佳防积碳能力的设计方案为,L=60mm、W=1 mm、R=1.7 mm、=0.5 mm,其最大积碳活性为67.2,输出电流密度为8159.2 A/m~2。(3)为了实现燃料电池余热的高效利用,以防积碳最佳SOFC设计方案为基础,结合工业流程软件Aspen Plus,构建SOFC尾气余热回收利用的燃料电池系统流程模型。将SOFC排放的高温燃料尾气和空气尾气用于入口燃料和空气的预热,以寻求系统的热平衡和实现系统效率最大化。研究发现甲醇SOFC系统能否利用尾气余热把燃料和空气加热到SOFC入口的设定温度与其工作电压、甲醇流量和空气流量息息相关。当工作电压为0.6 V时,电池输出功率和系统净功率均能达到最大值。
其他文献
7055铝合金是理想的高性能结构承力材料,目前主要应用于航空航天领域,并且在轻量化方面具有极好的应用前景。搅拌摩擦焊接技术在铝合金焊接方面具有显著优势,在工程上已得到广泛应用。焊接材料在搅拌摩擦焊接过程中存在着复杂的热-力耦合大塑性变形行为,材料的热流变规律直接决定了焊后接头的微观组织,进而对其宏观力学行为具有重要影响。因此,对搅拌摩擦焊接过程材料热流变行为的深入研究,对理解焊接接头组织演变规律及
学位
金属有机骨架材料(MOFs)具有超高的比表面积、均匀分布的孔隙和可控的结构,是新一代锂离子电池(LIB)中具有较大发展潜力的电极材料。但由于其存在着电导率低、电子传输不便、循环稳定性差等缺点无法满足商业需求。本文分别通过多金属掺杂、形貌控制和选择多羧基组分有机连接体等方法合成了一系列改进的MOFs材料并将其应用到锂离子电池负极材料,获得了优异的储锂性能。具体内容如下:(1)以1,4,5,8-萘四甲
学位
蚕蛹是缫丝主要副产物,蛋白质含量高达50%以上,是一种优质蛋白质资源。缫丝后的蚕蛹蛋白因其功能特性差而限制了它的应用,常被用作动物饲料,造成巨大的资源浪费。本课题以乳化稳定性为评价指标,分别研究糖基化修饰、超声辅助糖基化修饰和酶法联合糖基化修饰对蚕蛹蛋白乳液冻融稳定性的影响,通过荧光光谱、紫外光谱和扫描电镜等方法研究了糖基化修饰后蚕蛹蛋白的理化性质变化;通过Zeta电位、乳析指数和浊度等分析探讨不
学位
[目的]加氢站是氢燃料电池车推广应用的关键基础设施。70 MPa加氢可以显著提升氢燃料电池车的续航能力和经济性。为准确分析70 MPa加氢站的能耗,降低运营成本。[方法]建立了70 MPa加氢站加氢过程动态热力学模型,基于SAE J2601加注协议研究了单次加氢过程中压力和温度的动态变化规律,分析了单次加氢的能耗组成和多次加氢的能耗变化。[结果]结果表明:单次加氢过程中165 s加满车载储氢瓶,2
期刊
随着我国经济的快速发展,传统纱线难以满足人们对于轻量化、舒适度等的需求,喷毛纱线这种轻便保暖的纱线得到了市场的认可。但传统单喷毛纺技术因分梳系统对纤维原料的通用性不够、分梳效率低下、浪费验证等问题导致纺制要求很高的混纺纱线时会遇到种种困难严重制约着喷毛纺的发展。为突破传统单分梳喷毛纺技术的瓶颈,本文在前人有关单分梳喷毛纺技术研究的基础上,利用CFD仿真和实验相结合的方式分别对双分梳喷毛纺单头试验机
学位
脑疲劳作为一种日益普遍的现象,不仅威胁着人们的身体健康,更威胁着人们的人生命财产安全,尤其近年来,由疲劳引发的驾驶安全事故频出。因此,及时有效地对脑疲劳进行检测和预警,对提高工作效率,保护人们的健康安全具有极其重要的意义。脑电信号更能直接反映大脑皮层疲劳状况,而提取的脑电特征是否有效,将直接性地影响疲劳的检测效果。所以,为了更高速有效地检测出疲劳的发生,本文对脑电疲劳检测应用中多个特征提取方法的有
学位
报纸
碳纤维复合材料具有质轻高强、耐热耐磨耐腐蚀等优点,进而成为复合材料领域中研究和应用的增强材料之一。其中碳纤维发挥着阻裂增韧的重要作用,用于碳基和混凝土基体的多孔隙基体材料中可显著增强复合材料的力学性能。复合材料的性能增强和最终破坏仅为宏观表现,其纤维的作用机制、各组分的受力损伤演变则缺乏对应研究,所以需要运用细观力学的方法探究损伤拓展和失效机理,并做出有效预测。因此,针对贯穿型长碳纤维增强碳基、混
学位
原位自生钛基复合材料较传统钛合金有着更高的刚度和强度、更加优异的耐磨性和耐腐蚀性能,广泛应用于航空航天等领域。激光熔化沉积可以在构件制造过程中实现材料组分的调配并可实现快速成型,加快了复合材料的设计过程,非常适合于制备复合材料。本文使用行星球磨机制备了Ti6Al4V-B4C复合粉末,通过激光熔化沉积分别制备了(TiB+TiC)/Ti复合材料和Ti6Al4V钛合金以作对比,研究了增强相对复合材料的显
学位
本研究在Co-6Ti-11V基高温合金的基础上,加入不同含量水平的W、Mo、Cr、Mn和Nb五种难熔元素(文中元素含量均为原子百分比),利用XRD、SEM、TEM、DSC和高温压缩等测试和表征手段,研究了这五种难熔元素对Co-Ti-V系高温合金γ′相形貌和大小、γ/γ′两相晶格错配度、元素在γ/γ′分配行为、γ′相溶解温度以及合金的高温强度的影响。主要研究结果如下:在Co-6Ti-11V基体合金中
学位