论文部分内容阅读
本文主要通过活动标架法计算第二基本形式的拉普拉斯算子,并主要研究第二基本形式模长平方与子流形全测地之间的关系,具体内容包括: 第一章介绍子流形几何的研究背景、研究意义,以及国近几年内外学者对于这方面的研究状况.通过对研究背景及研究现状的深入分析,并阐述本文研究主要问题。 第二章介绍黎曼流形基本概念、符号及一些相关引理,第一部分在外围空间为常曲率黎曼流形时,计算第二基本形式的拉普拉斯算子,给出极小子流形全测地的一些结论;第二部分将外围空间推广到拟常曲率黎曼流形,利用相似的方法计算第二基本形式的拉普拉斯算子,并推广出极小子流形全测地的结果。 第三章介绍复射影空间的基本概念和符号,在外围空间为常曲率复射影空间时,计算法丛平坦的Kaehler子流形的第二基本形式的拉普拉斯算子,并得到一些结论。 第四章总结全文并作出展望.