基于碳纳米复合材料与信号放大技术构建电化学生物传感器的研究

被引量 : 9次 | 上传用户:nankaizhizhuan
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
电化学生物传感器是一种将电化学分析方法与生物学技术相结合而发展起来的具有响应快速、灵敏度高、选择性好、操作简单、成本低等优点的生物传感器。碳纳米材料(如石墨烯、富勒烯)因具有比表面积大、表面活性位点高及生物相容性好等优点被广泛的应用到生物传感器领域。近年来,基于新型纳米材料催化、酶催化以及生物学放大技术用于蛋白质检测的电化学生物传感器的研究颇受关注。本文的研究目的是将碳纳米复合材料、生物以及化学等多种放大技术相结合,实现高灵敏的检测。围绕本研究目的主要从功能化复合纳米材料的制备、敏感界面的构建以及新型信号放大技术的应用等进行了探索和研究。研究工作分为以下几个部分:1.电化学催化放大技术用于神经元特异性烯醇化酶的检测本文研制了基于金-石墨烯复合膜/铁氰化镍纳米粒子/纳米金修饰的电流型免疫传感器用于神经元特异性烯醇化酶(NSE)的检测。值得注意的是:1)基于铁氰化镍纳米粒子(NiHCFNPs)固有的电化学活性,NiHCFNPs修饰电极呈现出良好的氧化还原活性,可以用来指示免疫反应发生的进程,构建了无试剂型电化学免疫传感器。2)NiHCFNPs能够有效的催化DA,显著增强信号,避免了使用生物酶在标记过程中易失活这一缺点。3)金和石墨烯复合纳米材料(Au-Gra)具有比表面积大、吸附力强、生物相容性好等优点,大大提高抗体分子的固载量。该方法基于简单的直接法进行,不需要在测试溶液中加入其他的电活性物质,只需将NiHCFNPs固载到电极表面即可,具有操作简单、响应快速的优点。与传统的直接法相比,该传感器有较高的灵敏度,线性范围为0.001~100 ng mL-1,检测下限为0.3 pg mL-1(S/N=3)。2.基于多功能化洋葱状石墨烯层和双重催化放大构建电化学免疫传感器用于两种肿瘤标志物同时检测为了提高传感器的检测通量,本研究以功能化洋葱状石墨烯层结合双重催化放大技术构建了一种夹心型电化学免疫传感器,实现了基于同一敏感界面对于游离前列腺特异性抗原(fPSA)及前列腺特异性抗原(PSA)的同时检测。采用洋葱状石墨烯层为纳米载体,通过静电吸附作用在其表面修饰不同的电活性纳米材料,随后进一步固载亲和素(SA)和生物素标记的碱性磷酸酯酶(bio-AP),形成多重标记的洋葱状石墨烯纳米复合材料。当测试液中存在抗坏血酸酯(AA-P)时,bio-AP首先能够催化AA-P水解生成抗坏血酸(AA),接着,生成的AA进一步被电活性纳米材料(普鲁士蓝纳米粒子:PBNPs或铁氰化镍纳米粒子:NiNPs)催化产生DHA,实现双重信号放大。实验结果表明PBNPs和NiNPs具有良好的氧化还原可逆性且氧化还原峰电位相互分离,结合双重催化信号放大策略,完成了同时对两种目标蛋白质高特异和高灵敏的检测。该免疫传感器对fPSA和PSA的检测限分别达到6.7 pg mL-1和3.4pgmL-1。3.基于磁性石墨烯杂化微球构建电化学免疫传感器用于甲状腺疾病标志物的检测生物酶在标记过程中可能会影响蛋白的特异性位点,致使生物活性丧失。本研究基于杂交链式反应(HCR)为模板固载双酶(细胞色素c氧化酶和葡萄糖氧化酶)能够有效提高酶的固载量和很好的保持酶的生物活性。本文首先利用层层自组装方法制备以Si02为模板的磁性石墨烯杂化微球,该纳米材料集电化学氧化还原活性、磁性于一体,构建可再生的电化学免疫传感器。将制备的磁性石墨烯杂化微球作为纳米载体通过化学键合作用固载信标抗体和引物链S1,通过生物催化放大技术和双酶逐级催化有效的放大响应信号。基于夹心免疫反应,将该免疫传感器用于检测甲状腺疾病标志物,线性范围为0.05 pg mL-1~5 ng mL-1,检测限达15 fgmL-1。经实验研究证明该方法切实可行,为传感器灵敏度的提高提供了新的思路。4.基于多功能化的C60纳米复合材料作为信号标签构建电化学适体传感器随着对碳材料性质研究的进一步深入,C60作为一种生物传感材料开始被应用于电化学传感器领域。C60易溶于苯、甲苯和二硫化碳等非极性有机溶剂,但不溶于水,而且导电性能不高。为了改善C60的水溶性,我们用带有NH2活性端基的苝四甲酸(PTC-NH2)功能化nano-C60,基于超分子化学得到了水溶性好的C60纳米材料(FC60NPs)。接着通过化学键合作用在其表面修饰纳米金包裹的普鲁士蓝纳米粒子(Au@PBNPs),继而得到多功能化的C60纳米复合材料(Au@PB/FC60)。为了提高传感器的灵敏度,将碱性磷酸酯酶(AP)标记到Au@PB/FC60表面,在底物抗坏血酸酯(AA-P)存在下,AP首先能够催化AA-P水解生成抗坏血酸(AA),接着,生成的AA进一步被Au@PB/FC60催化产生DHA,实现双重信号放大。将该适体传感器用于检测血小板源性生长因子(PDGF),线性范围为0.002~40 nmolmL-1,检测限达0.6 pmol mL-1。实验表明,该适体传感器具有选择性好、灵敏度高,有望应用于临床检测中。5.C60纳米材料作为氧化还原纳米探针构建电化学免疫传感器用于兴奋剂的检测碳纳米材料因具有比表面积大、导电性及生物相容性好等特点通常作为纳米载体被广泛的应用到生物传感器领域,却很少被用作氧化还原纳米探针。C60除了具有上述碳纳米材料的优点外,还具有内在的氧化还原特性,如强的接受电子能力容易形成相应的阴离子。本文首先用聚酰胺-胺(PAMAM)功能化C60纳米颗粒(PAMAM-C60NPs),然后利用PAMAM-C60NPs表面大量的氨基可以吸附纳米金,得到了C60氧化还原纳米探针(Au-PAMAM-C60NPs)并用于标记信标抗体构建了夹心型免疫传感器。值得注意的是,当修饰好的免疫电极表面孵育四辛基溴化铵(TOAB)后,Au-PAMAM-C60NPs内在的氧化还原活性被唤醒,在-0.45~0.3 V的电位范围内得到一对可逆的氧化还原峰。基于夹心免疫反应,将该传感器用于检测兴奋剂(EPO),有较宽的线性范围和较低的检测下限,将其用于临床样品检测,得到满意的结果。此外,该研究工作为将碳材料作为氧化还原纳米探针用于电化学生物传感器的构建提供了新方法。
其他文献
<正>自1983年首次发现艾滋病病毒(HIV),全球科学界投入大量资源研究艾滋病疫苗,至今未有重大突破,艾滋病疫苗已成为最难攻克的人用疫苗之一。我国的艾滋病疫苗研究采用了创新
在民俗研究将目光从“向后”转移到当下的研究语境中,本文以对“遗产化”的理解为落脚点,探讨土家织锦如何在民俗生活中淡化,而又如何作为非物质文化遗产复兴的图景。土家织锦从民俗生活中淡化到作为非物质文化遗产复兴,这个过程并不是泾渭分明,而是一个逐渐转化的过程。“遗产化”语境中的土家族织锦主要呈现出如下图景:第一,日常性的淡化。土家织锦日常性淡化的特点主要体现在以下两点,首先,工艺主体分散为制作主体和消费
论文阐述了《全球移民契约》的重要理念、主要特点以及《全球移民契约》对中国的借鉴意义。论文认为,2018年12月在联合国大会获得通过的《全球移民契约》,是联合国首个关于国
背景贲门失弛缓症是一种少见的疾病,以神经源性的食管运动紊乱为主,本病的发病率约为1/100000。AC的发病与食管蠕动停止、食管下段括约肌压力增高以及食管下段括约肌压力释放障碍直接相关,并出现了一系列的临床症状如吞咽困难、消瘦、反流及胸痛等,严重影响了患者的生命质量,并且长期的食管下括约肌不能松弛,致食物潴留在食管,容易刺激食管粘膜,出现出血、炎症,甚至出现溃疡,少数人可能出现癌变。经口内镜下环形
汉字是记录汉语言的书面材料,几千年来汉字形体大致经历了甲骨文、金文、小篆、隶书、楷书以及现代汉字的动态演变。在这些演变中,大多数汉字的理据性部分丧失或者完全丧失,
<正>基层治理法治化,就是要在党的领导下,按照法律来管理基层事务,即基层的政治、经济、文化等一切活动依照法律管理,公民的所有行为依照法律进行,使基层的一切需要和可以由
众所周知,无论是国内品牌、洋品牌还是著名商标都是极赋价值的无形资产。随着我国对外开放和经济的飞速发展,加入WTO以来,越来越多的洋品牌漂洋过海登陆中国。我国政府和相关部
备战铁矿是西天山阿吾拉勒成矿带中的大型铁矿床,通过近几年的勘查工作资源储量不断增加。本文在大量的野外地质调查的基础上,详细总结了矿床地质特征、分析了矿床地球化学特征
本文通过录像观察,对2008年和2012年的欧洲杯决赛阶段31场比赛的149个进球的特征进行综合统计分析:2012年欧洲杯决赛阶段的场均单场进球数略高于2008年欧洲杯,下半场的进球数要
应用于照明领域的LED功率不断提高,其散热问题日益突出,开发新的封装方式与散热材料成为LED照明技术的核心问题。Chip on Board (COB)封装因具有更小的热阻而成为一种极具潜