一种非均匀纵向磁场作用下的焊缝跟踪电弧传感器研究

来源 :湘潭大学 | 被引量 : 0次 | 上传用户:liongliong423
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着国内各种大型项目的规模建设,复杂零件的轨迹成型和加工被普遍运用到各种领域当中,因此对复杂轨迹的自动化焊接有着非常急切的需求。焊接是先进制造领域中无可替代的材料成型和加工工艺方法。TIG焊(钨极惰性气体保护焊)具有稳定性高、焊道质量好等优点,是一种广泛应用于复杂轨迹成型的焊接工艺。但TIG也存在自身的缺点:焊接效率低,焊接速度慢等,随着国内建筑、汽车、电子、航空等领域的制造业项目的规模建设,现阶段的TIG电弧的焊接工艺已经不能满足日益增长的生产需求,于是优化其工艺和提升其自动化程度成为目前迫切需要解决的难题。TIG电弧由于充斥着各种带电粒子,可以引进外界磁场来控制电弧达到提高焊接智能化的目的,并且磁控传感器不仅能获取焊缝空间位置信息进行焊缝识别,而且还能通过改变电弧的形态来改善电弧的能量分布,获得提升焊接效率和优化焊缝成型的效果。因此,对磁控电弧的新课题探究是提升焊接效率和改善焊缝成形。针对目前机械式焊缝识别过程中存在多种噪声干扰的问题,提出了一种基于非均匀纵向磁场作用下的TIG焊缝识别技术,磁控电弧具有实时性强,不易受弧光影响等优点被广泛运用到各种材料加工过程。借助COMSOL软件,建立磁流体动力(MHD)方程作为等离子弧的仿真模型,在纵向磁场(LMF)作用下TIG电弧弧柱的热量、电压、电流、流场随外加磁场变化而变化进行数值模拟,并对其机理进行分析,最后通过数值分析及试验进行对比,揭示了非均匀纵向磁场控制电弧粒子的旋转半径、电弧摆动频率及电弧温度分布的演化规律。纵向磁场的引入能变动电弧的运动轨迹,从而改善电弧电压大小和温度分布,电弧螺旋下降运动,带电粒子的运动轨迹路径距离增长,宏观上显现为电弧弧柱的长度变长,导致电弧的电压增大,同时,熔池的流动加剧,改变了晶体结晶条件。引入仿真结果的磁场条件,搭建纵向磁场牵引TIG电弧运动轨迹实验平台,利用高速摄影仪器储存了不同纵向磁场分布强度影响下的电弧轨迹,分析了多组纵向磁场分布强度对电弧运动轨迹的作用;同时也利用电流电压传感器收集LMF作用下的电弧信号。研究发现表明非均匀纵向磁场能够牵引直流正接的TIG等离子体旋转收缩或者扩张且周期性的偏转,进一步证明了非均匀纵向磁场牵引TIG等离子弧柱进行焊缝识别的可能性。所以,对非均匀纵向磁场控制直流正接的TIG电弧实现焊缝识别的研究能够极大提升焊接产品质量和焊接生产效率,实现焊接领域技术的突破。
其他文献
南海岛礁建设远离大陆,特别是应急建设易受海况、运距制约,而就地取材,有效利用广泛分布珊瑚礁坪和潟湖的珊瑚砂是解决这一问题的有效途径。但是,高盐、高温和高湿等恶劣的海洋环境具有侵蚀作用,尤其氯离子渗透侵蚀珊瑚砂建构筑物。因此,营建“安全岛”、“生态岛”就必须考虑阻滞氯离子渗透,采用掺入极少量的氧化石墨烯(GO)到珊瑚砂砂浆,最大程度改善珊瑚砂砂浆阻滞氯离子渗透的性能,满足工程建设的要求。本文在对比河
航天飞行器主结构舱是航空航天领域高端装备的关键部件,具有材料成本高、加工难度大、加工时间长等特点,对航天飞行器主结构舱进行再制造具有显著的经济效益。航天飞行器主结构舱在疲劳载荷和腐蚀的作用下极易产生裂纹,裂纹的产生会对航天飞行器的运行带来严重的安全隐患,因此,再制造修复前,需要通过无损检测技术对裂纹进行检测并进行定量化表征。结构健康监测技术通过布设在构件表面或嵌入构件内部的传感元件采集构件的运行信
碳化硅(SiC)作为第三代宽禁带半导体材料,有着宽禁带宽度、高击穿电场、高热导率等特点,是发展大功率、高频高温以及抗强辐射等技术的关键。电子器件在空间环境工作期间,会受到空间辐照粒子以及射线的影响,导致器件性能退化,从而影响航天器在轨服役的可靠性。迄今为止针对碳化硅功率器件的中子位移损伤研究较少,且研究对象主要集中在对辐照前后电学特性变化的描述。本文基于上述背景,针对碳化硅肖特基二极管以及场效应晶
锥形橡胶弹簧常应用于轨道交通之中,能起到减振、增加车辆舒适性的作用。橡胶弹性元件在工程应用中所面临的工况异常复杂,大变形与交变载荷的作用会对产品造成损伤,材料受到损伤后其疲劳寿命次数与刚度值都会受到严重影响,其损伤的大小将直接决定材料在工程中是否还能继续使用。因此了解橡胶产品的疲劳破坏因素与准确预测产品疲劳寿命至关重要。本文的主要工作如下:1.在综述国内外对于橡胶材料疲劳失效研究的基础上,总结引起
钢-混凝土组合梁凭借着其在稳定性、抗震性、施工便捷性等方面的突出表现在建筑领域得到了从业人员的广泛认可。但是钢-混凝土组合梁的上述优点仅仅在其承受正弯矩作用时才能有效地发挥出来。由于混凝土材料与钢梁材料的力学性能差异,处于负弯矩区域的钢-混凝土组合梁容易出现混凝土板损坏、钢梁局部失稳的破坏现象。这类现象的出现严重损害了建筑结构的安全性、适用性、耐久性。针对钢-混凝土组合梁在负弯矩区域出现的混凝土板
微流控装置在粒子操作、制药和生物医学等领域具有重要的意义,广泛应用于流体流动的控制和微粒子的处理。其中,微阀系统能够精确控制颗粒和流量,而倍受研究人员的青睐。传统的微阀系统需要借助昂贵复杂的外加仪器,限制了微流控装置的小型化和集成化。基于此,本论文提出了一种简单而有效的应变可调的裂纹和褶皱微阀的构筑策略。通过研究微阀尺寸与外加应变等相关机制,制备了基于应变可调裂纹及褶皱微阀的微流控装置,成功实现了
由于海泡石具有独特的孔道结构和优良的物理性能,从而被广泛应用于吸附剂、除臭剂、脱色剂、过滤辅料、橡胶填料、肥料悬浮剂、洗涤剂、土壤改良等方面,是工农业生产和日常生活中不可缺少的矿物原料。人们一般关注海泡石的物理性能和应用,而关于其力学性能的研究却鲜有报道。因此,本文选取海泡石为研究对象,运用分子动力学的方法,对海泡石的力学性能、离子和气体吸附性能进行了理论分析。本文主要内容如下:(1)建立了海泡石
现浇混凝土空心楼盖作为一种新型的楼盖形式,具有自重轻、施工方便、造价便宜等优势。在混凝土空心无梁楼板常用的内模材料中,薄壁空心箱体以空心率大、配筋率低、能节约更多的钢筋混凝土等显著特点,广泛应用于实际工程项目建设中。目前,国内外对于薄壁箱型空心楼盖的研究多采用缩尺试验和数值模拟研究它的变形和内力特征;空心楼盖宏观等效弹性模量具有典型的各项异性特征,其宏观(粗尺度)等效弹性模量受局部(细尺度)的空心
在分子生物学领域中,发现RNA三螺旋poly(U)(9)poly(A)·poly(U)在很多生物功能活动中起着重要的作用。但是RNA三螺旋Hoogsteen氢键的弱稳定性,会导致整个RNA三螺旋结构的不稳定,从而限制在生物功能活动中的应用。根据目前的研究结果表明钌(II)金属配合物作为结合剂与RNA三螺旋结合,对调节三螺旋的稳定性具有大的发展潜力。因此,本文设计了一些新型钌(II)多吡啶配合物,作
稀土元素被誉为“工业的维生素”,在大量高新科技和材料科学领域具有不可替代的作用,是国家重要的战略资源和大国博弈的重要商品之一。研究人员发现在西太平洋的C-C矿区的深海沉积物泥浆中蕴含大量的稀土元素,具有非常高的开采价值。然而面对深海的高压环境和极限开采条件的限制,传统的采矿学和力学等理论难以解决深部开采出现的技术难题,特别是如何进行运输的问题。目前深海矿产资源开采常用的运输技术是管道输运,然而考虑