多尺度模拟在储能和电化学催化领域的应用

来源 :苏州大学 | 被引量 : 0次 | 上传用户:wlq808
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
当前我国能源结构中占比最大的依然是煤、石油、天然气等化石能源。作为不可再生能源,化石燃料不仅面临着剩余储量有限、开采量大等危机,在利用过程中还存在着能量转化效率低、资源浪费严重、加剧环境污染等问题。为了应对能源危机,近年来研究者们不断探索太阳能、风能以及生物质能等清洁高效的新型能源的开发与利用。当前的生产生活体系构筑在化石燃料之上,要过渡到低排放可再生的能源系统,需要发展可靠的储能以及高效的化学燃料电池作为替代方案。一方面,由于风能和太阳能间歇性发电的特点,需要将其所发电能进行储存;另一方面,燃料电池通过对生物质燃料的高效反应,可以极大地减少对化石燃料的依赖。以密度泛函(Density Functional Theory,DFT)为理论基础的多尺度模拟分析方法在储能以及电化学催化领域发挥着越来越关键的作用。本文利用多尺度模拟分析手段,分别对储能领域的锂金属电池中局部高浓电解液的分解机理和电化学催化领域的甲醇和乙醇燃料电池进行了深入的研究,阐释了相应的反应机理。(1)锂金属电池体系中局部高浓电解液在锂金属负极表面的分解机理。锂金属负极拥有最低电化学电位和最高的理论容量,但是锂枝晶生长所造成的安全隐患问题,一直制约着其发展。本研究中,我们对一种局部高浓电解液体系进行了深入系统的研究。通过课题组独立开发的HAIR(hybrid ab initio and reactive molecule dynamics)方法,研究了纳秒尺度的电解液分解过程以及高性能的SEI(Solid Electrolyte Interphase)生成机理。并用XPS分析验证了模拟分析结果与实验结果的一致性。(2)对增强直接甲醇氧化电池性能的三元合金纳米线的机理分析。金属铂有着优越的活化甲醇的能力,但由于反应中间体CO的毒化作用,使得该反应的动力学过程缓慢。本研究中,着手于实验合作者开发的三元合金纳米线,通过DFT计算以及Bader电荷分析揭示其独特的电子性质,阐释了其催化活性提升的机理。(3)对核壳纳米粒子提升直接乙醇燃料电池氧化活性的机理研究。乙醇作为一种生物质燃料,能量密度高并且环保,但是乙醇氧化是一个动力学缓慢过程。实验合作者合成出具有拉伸应变效应的核壳纳米粒子,具有良好的催化性能。由DFT计算分析了纳米粒子的拉伸效应如何影响反应中各中间体的相互作用强度,进而通过反应能垒的变化影响反应路径。证明了拉伸应变在提高C1路径选择性和乙醇反应活性的关键作用。
其他文献
刺激响应性药物控制释放体系可以用于药物的靶向递送和按需释放,其能在提高药物治疗效果的同时减小副作用,因而可用于治疗多种疾病。随着现代纳米技术的不断发展,用来构建控制释放体系的载体越来越多。介孔硅纳米颗粒(mesoporous silicananoparticles,MSNs)由于其比表面积大、尺寸和孔径易调节、易合成、易修饰、生物相容性好等优点,成为了一种具有前景的药物载体。本论文以介孔硅(MCM
学位
放射诊疗等核技术应用在医疗、工业等领域给人类带来了很大的便利,然而电离辐射对人类健康的影响逐渐成为了一个重要问题。短期内受到大剂量电离辐射后,人体会出现急性放射病。根据受到剂量的差异可以简单分为急性骨髓型放射病、急性肠型放射病、急性脑型放射病。急性骨髓型放射病主要表现为贫血、恶心、呕吐等症状;急性肠型放射病主要症状为腹痛、便血等;急性脑型放射病患者会出现昏迷、脑出血等症状,严重者可当场死亡。急性放
学位
实验室尘埃等离子体一般是指含有微米尺度尘埃颗粒的部分电离成等离子体态的气体。由于尘埃颗粒所携带的电荷量较大,颗粒间势能一般大于其动能,即形成强耦合等离子体,大量尘埃颗粒表现出典型的固体和液体的性质。在等离子体放电腔中,尘埃颗粒可通过电场悬浮并限制在等离子体鞘层中,并且自组织形成一个单层悬浮,即二维尘埃等离子体。更有意义的是,实验中二维悬浮中每个尘埃颗粒的运动轨迹,可以通过高速相机直接记录和精确追踪
学位
有机半导体中少数载流子陷阱态的存在通常被认为是导致有机光电晶体管高光响应的重要原因之一。然而,由于有机半导体中少数载流子陷阱态来源尚无定论,造成器件光响应增强机制不明确,给器件的理性设计与优化带来了挑战。为此,本文重点研究了有机半导体中少数载流子陷阱态的起源以及其对光电晶体管光响应增强的机制,并以此为指导设计了一种新型光电晶体管器件结构,实现了其在弱光探测中的应用,具体研究如下:一、Dif-TES
学位
以水为能量源的技术——水伏,通过利用水在特定材料表面的物理化学作用产生电能的新型能量转化技术,凭借其低成本、稳定可控以及无需外界能量介入的优势已经引起了人们的广泛关注,尤其是近年来被频繁报道的收集水蒸发时能量的硅基水伏器件,相比之前的器件,功率密度已经有了极大的提高,但是硅基水伏器件的性能仍然受限于硅纳米阵列的长度;另外,利用绝缘体作为功能材料的器件——纳米摩擦发电机(TENG),可以利用水的机械
学位
慢性阻塞性肺病(chronic obstructive pulmonary diseases,COPD)常常与长期的烟雾暴露有关,吸烟导致持续的肺部炎症以及肺功能损伤。在疾病后期,由于肺免疫系统长时间受到抑制,细菌容易入侵肺部并持续刺激肺免疫系统,造成严重的免疫失衡。抗生素是临床治疗COPD的常用药物,但长期使用易引起细菌耐药性,降低治疗效果。抗菌肽(antimicrobial peptide,A
学位
人类对信息处理的需求随着人工智能技术的发展与日俱增,而愈发紧张的能源和环境问题,又对计算机运行效率提出了更高的要求。由于传统计算机系统内存储和计算单元分离,因此它的运行速度和能耗效率均存在上限;随着晶体管的尺寸、性能等因素逐渐趋近于其物理极限,改进计算机的结构及运行方式显得很有必要。基于对人脑神经系统的研究,以忆阻器、忆容器为代表的新型记忆器件开始收获越来越多的关注。得益于神经突触具有同时进行信息
学位
随着化石能源的紧缺以及碳达峰和碳中和的提出,清洁能源成为如今最理想的能源。风能作为清洁的能源之一,发展十分迅速,风力发电也成为我国新能源应用技术中最具研究价值的发电方式之一。但是风电机组大多的运行环境十分的恶劣,运行的数据中会出现大量的不符合风电机组正常输出的异常数据,这些异常数据会对后面风电机组状态的分析产生严重的影响。为了让风力发电成为更加可靠的电能来源,建立准确的风电机组异常检测模型十分重要
学位
有机光电探测器具有诸如可通过简单的溶液法制备、低成本、可调控光响应范围以及轻便等优势吸引了越来越多研究者的目光。本论文主要研究了两种基于溶液法制备的有机半导体光电探测器,其中一个吸收385-505 nm波长范围内的光,另一个吸收光的波长范围主要在400-600nm,具有蓝光和绿光检测的潜力。此外,本论文将基于上述材料的光电探测器进行垂直堆叠,对蓝色和绿色双波段堆叠器件结构与性能进行了初步探索。本文
学位
近年来,有机小分子半导体材料由于其可定制、机械柔性、成本低、可大面积制备等许多优势为研究人员广泛研究,而深入了解其内部的电荷传输以及能级结构对设计新型材料和高性能器件非常重要。然而目前,对有机小分子半导体材料内分子间相互作用影响的电荷传输机制的研究还不够完善,对材料内少数载流子陷阱态及能级结构的研究也还不够清晰。针对该问题,本论文从理论计算的角度出发,结合一定的实验分析,对有机小分子半导体材料的电
学位