磁力诱导的动态表面起皱研究

来源 :天津大学 | 被引量 : 0次 | 上传用户:minjiangfashion
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
皱纹作为自然界中一种常见的现象在压力传感、光电器件、微纳结构等领域拥有广阔的应用前景,其中,水面皱纹由于其特殊的体系在可控性方面存在很大的挑战。本文提出了一种简单而通用的方法,利用磁性液滴和钕磁铁动态可逆地调整聚合物漂浮膜上的表面皱纹。钕磁铁对磁性液滴的吸引力是聚合物漂浮膜表面不稳定性的主要原因,这种表面失稳会在环向引发径向应力,并引起全方位压应力。该压缩应力不仅可以使水面漂浮膜起皱,而且可以产生皱纹-折叠转变。通过改变磁性液滴和钕磁体之间的距离,聚合物薄膜的厚度以及磁性液滴体积,我们系统地研究了这些因素对聚合物漂浮膜的表面形貌的影响。随着磁性液滴与钕磁体之间距离的减小,聚合物薄膜厚度的减小以及磁性液滴体积的增加,皱纹数量增加,发生皱纹-折叠转变。另外,在漂浮膜上的多个磁性液滴的耦合效应也已经被应用于实现新颖的表面皱纹图案,这极大地拓宽了表面皱纹的应用。选用PA水凝胶作为体系的基底,在PS/PA水凝胶的体系中,通过外界的横向磁场对磁球的吸引实现了磁力诱导的选区起皱。该体系利用磁球与外接磁场的响应实现了磁球在PS薄膜上的运动,进一步丰富了动态皱纹的演变。最后,我们研究了PS/PDMS体系中掺入Fe3O4的影响。我们探究了Fe3O4对于不同波长光的吸收,利用Fe3O4在808 nm激光的照射下优异的光热效应,实现了快速、高效起皱以及皱纹快速擦除,同时我们通过控制光照区域对体系进行选区曝光起皱;通过Fe3O4物理及化学特性对表面皱纹形貌进行精准调控,这种方法为静态皱纹的研究及应用提供了一种新的思路。
其他文献
当前,随着技术创新的深刻变革,制造业的国际竞争已经逐渐演化成为技术标准的竞争。高技术制造业是制造业中最具有科技实力的产业集群,对提升我国综合国力和国际竞争力有着十分关键的作用。而生产性服务作为高技术制造业必要的中间投入品,能够推动高技术制造业提升生产率,加速实现转型升级。然而,现阶段我国自身的生产性服务业发展滞后,难以满足国内高技术产业发展中愈发严格的中间需求,因而我国的高技术制造业需要通过进口生
学位
2013年以来,沪深交易所陆续开通信息披露直通车试点并通过问询函的形式对披露信息不完善、不明确的地方展开“刨根问底”式的问询,上市公司需要在规定时间内书面回函,对关键信息进行解释、更正或补充并公开披露。自此,交易所问询函作为新兴非行政处罚监管方式频繁出现在大众视野,并引发学术界和实务界的广泛关注,逐渐成为中国资本市场的重要监管手段。现有研究肯定了交易所问询函作为非行政处罚手段的监管效力,但交易所问
学位
我们提出了一种方法可以构造精确可解的Gross-Pitaevskii型方程。根据我们给出的方法,只要有了一个Gross-Pitaevskii型方程的解,可以构造一族无穷多个精确可解的Gross-Pitaevskii型方程。这些方程形成一个家族,家族成员之间可以通过变换关系互相得到。非线性薛定谔方程、quintic Gross-Pitaevskii方程和cubic-quintic GrossPita
学位
磷酸钙骨水泥(CPC)因具有自固化性、易于塑形、反应无放热以及良好的生物相容性等优点,被广泛用作临床上骨缺损修复的替代材料。但是,CPC存在抗溃散性差的缺点。它在人体中一旦发生溃散,将会导致炎症反应甚至肺栓塞、心血管堵塞等重大医疗事故。因此,改善磷酸钙骨水泥的抗溃散性具有重要意义。本课题在CPC中分别添加聚乳酸羟基乙酸-聚乙二醇-聚乳酸羟基乙酸三嵌段共聚物(PLGA-PEG-PLGA)温敏水凝胶和
学位
近年来,光催化还原二氧化碳(CO2)技术在可再生能源项目中的应用引起了研究人员的极大兴趣。然而,目前光催化还原二氧化碳的效率仍然很低,最主要的原因是光生电子和空穴极易复合以及对二氧化碳分子的吸附和活化性能较差。针对上述问题,本文提出引入非贵金属碳化钛金属烯(Ti3C2 MXene)助催化剂,利用简单的静电自组装合成法构建碳化钛金属烯/氧化锌(Zn O)纳米复合材料体系,着重探究Ti3C2 MXen
学位
自20世纪70年代以来,基于插层化学反应的锂离子电池的能量密度得到了不断地提升,但目前其已经达到理论极限。因此,新型的具有高能量密度的锂金属电池成为研究热点之一。但由于锂金属的高活性和在电沉积过程中产生锂枝晶等问题,使得锂金属电池的实际应用受到了限制。本文首先通过调节反应温度、保温时间和氮源含量等条件,对五氧化二钒氮化后的产物(V2O3/VN、VN等)进行了分析,确定了V2O3/VN纳米片的制备工
学位
氧电催化反应,包括氧还原反应(ORR)和氧析出反应(OER),是燃料电池、金属-空气电池等清洁可再生能源技术的关键环节,对解决能源和环境问题具有重要意义。然而,ORR/OER通常存在很高的过电势,从而限制了器件的整体效率。开发高效且具有成本效益的氧电催化剂具有重要意义。过渡金属氧化物由于低廉的成本以及成分和晶体结构调节的灵活性成为理想的催化剂材料。探寻有效的策略调控过渡金属氧化物的电子结构从而增强
学位
功率模块的高温、高功率、高密度发展趋势,对模块的封装结构提出了更高的要求。相较于传统的引线键合结构,双面散热结构由于具有高散热能力和低寄生电感等优点正引起关注。但是双面散热结构材料间热膨胀系数的差异使焊层承受较大的热应力,降低了功率模块的可靠性。本文针对双面散热碳化硅(Silicon Carbide,SiC)金属-氧化物半导体场效应晶体管(Metal-Oxide-Semiconductor Fie
学位
由于传统化石燃料的过度使用,能源危机和环境污染问题日益严峻。因此推动基于电催化反应的电化学能源转换和存储技术的发展显示出了十分重要的现实意义。Pd金属在如析氢、氧还原和甲酸氧化(Formic acid oxidation reaction,FAOR)等多种催化反应中扮演着重要的角色,但是商业Pd/C催化剂较差的催化活性和Pd本身易于被CO毒化的特点阻碍了其进一步应用。在此大背景下,开发新型、高效的
学位
铝基复合材料(aluminum matrix composites,AMC)具有比强度和比模量高、热稳定性良好等特点,被广泛应用于交通运输、精密仪器等尖端领域。其中晶须增强AMC不仅能提高材料的强度和保持较好的塑性,而且拥有良好的加工性能,显示出广阔的应用前景。目前制备晶须增强AMC主要包括外加法和原位法,外加法受晶须结构损伤、界面反应、晶须团聚和界面结合较差等缺点的影响,难以发挥晶须的优异特性,
学位