正线性算子与算子半群

来源 :厦门大学 | 被引量 : 0次 | 上传用户:ding89629
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
逼近论的一个核心而经典的课题是正线性算子的研究.自从1912年S.Bernstein提出Bernstein算子以来,多项式算子逼近连续函数的问题经历了百年的发展,理论体系已经相当完善.经典Bernstein算子不仅在逼近论和计算学科中有重要应用,近20年来,它在计算机辅助几何设计中扮演着极其重要的角色.尤其是Bernstein基函数在曲线曲面造型中的广泛应用,再次激发了人们对该算子的研究兴趣.但是传统研究Bernstein算子主要是用它来逼近有限闭区间上的连续函数,一般无穷区间上的连续函数都是考虑用Szász-Mirikan算子来逼近的.但是Szász-Mirikan算子最大的局限在于它是一个无穷级数函数,一般在应用上非常不方便,通常在应用上都是考虑用它的有限部分和来替代.而实际上,我们发现在一定的参数变换下,经典Bernstein算子也可以用来逼近无穷区间上的连续函数.这里我们特别要提到的是Bernstein型算子的算子半群结构表示问题.本文通过建立各类Bernstein型算子的半群结构表示,通过另一个角度揭示了Bernstein型算子的许多本质特征.经典Bernstein算子的推广问题,也是一个非常热门的研究课题.目前比较经典的推广莫过于q-Bernstein算子和Chebyshev-Bernstein算子,这两类算子及其基函数在CAGD中也有着极其广泛的应用.而其中有一类重要的推广被长期忽略,近几年忽隐忽现在学术文献中,那就是Lototsky-Bernstein算子.该算子最早由King在1965年的一篇短文中提出,1970年代,Eisenberg和Wood将这类算子推广到解析函数的研究中.除此以外,Lototsky-Bernstein算子并未被足够重视,而在学术文献中销声匿迹.从1980年代末开始,多项式“开花”(Blossoming)引起了人们的兴趣,“开花”在CAGD中得到了广泛的研究,它不仅在多项式研究中有应用,在样条函数研究中也有许多优势.而经典n阶Bernstein算子本质上就是n次多项式算子,通过对这类算子的开花,并对开花后的n个新的变元分别用n个独立的递增函数pi(x)来代替,我们就得到Lototsky-Bernstein算子了.这类Lototsky-Bernstein算子之所以被忽略的一个很重要的原因是它并没有像经典Bernstein算子那样有着非常完美的性质,包括保线性性,保单调,保凸,基函数是全正的等等.我们需要对这n个pi(x)有一定的限制以便满足相应的性质,而这n个函数pi(x)是完全独立的,因此这个工作量是相当大的,并且文献中也并没有可参阅的蓝本,因此我们需要独创方法来系统研究Lototsky-Bernstein算子的逼近性质和几何性质.本文共分四章.第一章主要介绍相关背景知识和研究进展.第二章主要介绍Bernstein型算子的半群结构表示及其应用(本章的工作主要对应于作者博士阶段的研究成果[1,2,4]).第三章主要介绍一般意义下的Lototsky-Bernstein算子的各类保形性质(本章的工作主要对应于作者博士阶段的研究成果[3]).第四章主要介绍不动点函数恒等情况下的Lototsky-Bernstein算子的相关性质(本章的工作主要对应于作者博士阶段的研究成果[3,8]).第二章至第四章主要得到了下面的结果:(一)在第二章中,我们主要对各类Bernstein型算子逼近Szász算子进行研究.我们主要通过建立Bernstein型算子的半群结构表示,并应用半群理论的相识知识解决算子逼近问题.同时我们也建立了 Bernstein-Durrmeyer算子的半群结构表示,并应用这种结构表示来解决Bernstein-Durrmeyer算子逼近Szász-Durrmeyer算子的相关问题.通过这样的半群表示方法,我们大大改进了这类逼近问题中的许多经典结果,尤其是估计上界的改进问题.在本章的最后部分,我们引入了 Shorgin恒等公式,应用这个恒等公式,我们发现了经典Bernstein算子的许多未被揭示的性质,例如,我们可以用Bernstein算子来逼近无界区间上的无界函数,并且得到了相应的阶估计.通过Shorgin恒等式来解决逼近问题的方法在逼近论的发展历史中尚属首次.我们在第三章中,通过应用这个Shorgin恒等式,还给出了 Lototsky-Bernstein算子的渐进逼近性质.本文通过引入正线性算子的算子半群表示公式来研究正线性算子的性质的方法,开辟了认识正线性算子尤其是Bernstein型算子的新途径.(二)在第三章中,我们系统研究了Lototsky-Bernstein算子的各种保形性质,包括不动点理论,不动点函数的逼近性质,迭代收敛性,有界变差递减性质,Lototsky-Bernstein基函数的全正性和变差递减性,形状保持(单调性保持,凸保持),Lototsky-Bernstein算子及其不动点函数关于函数pi(x)的依赖性以及Lototsky-Bernstein算子的渐进收敛性.这里要特别提到的是Lototsky-Bernstein 基函数的全正性,因为基函数的全正性在 CAGD 中有着极为广泛的应用,规范的和全正的基函数是一类非常适合曲线曲面造型的基函数.我们也将在后续的相关研究中系统介绍这类基函数不同于传统基函数在曲线曲面造型中的灵活性,它在造型上的效果与B-样条在造型上的效果是相当的,但是结构更加简单,操作更加简便,计算量更加小.(三)在第四章中,我们将着重讨论不动点函数恒等情况下的Lototsky-Bernstein算子.传统正线性算子都是保持线性的,也就是说不动点函数不会随着算子阶n的变化而变化.而Lototsky-Bernstein算子的不动点函数γnp(x)是随着n的不同而不同,它们严格依赖于pi(x),i≥1.甚至当所有的pi(x)都相等的情况下,相应的不动点函数γnp(x)也是互不相同的.这就给我们研究Lototsky-Bernstein算子提出了挑战,那么当pi(x)满足怎样的条件下,才能保证对应的不动点函数γnp(x)是固定不动的,不随着n的变化而变化呢,本章主要解决这个问题.我们研究了不动点函数恒等情况下的Lototsky-Bernstein算子的相应性质,并且系统讨论了此时相应的pi(x),i≥1的相互依赖性,pn(x)的收敛性,单调性.我们发现当p1(x)满足一定的限制条件下,对所有的(1,P1)-凸函数,也有Ln(f;x)≥ Ln+1(f;x).
其他文献
面向2020年及未来,物联网(IoT)将会呈指数式增长并成为未来通信发展的主要驱动力之一。作为物联网关键技术之一的短距离无线通信技术将以第五代移动通信(5G)为支撑,实现高吞吐量,低功耗的绿色环保通信。由于混沌信号具有宽带、类似白噪声等特性,且混沌系统具有低成本,低功耗,低复杂度等优点,近年来,基于混沌的超宽带(UWB)技术受到广泛关注,并被多种短距离无线通信应用网列入标准中。因此研究高吞吐量混沌
作为了解美国黑人生存状态最重要的文类,美国黑人自传在美国黑人文学史里占据着举足轻重的位置。美国黑人作家在自传里猛烈抨击了奴隶制的残暴,讲述了他们为了摆脱奴役,争取自由而进行的坚持不懈的斗争,同时也探索了奴隶制对于美国黑人造成的恶劣的社会和心理影响,揭示了现代社会里美国黑人仍然遭受种族歧视的现实。但是在二十世纪之前,大部分黑人传记都是男性作家的作品。由于受到男权思想的影响,黑人女性对黑人男性作家来说
现有发展和研究的微机械陀螺仪可分为线振动和环振动两类,前者具有大哥氏敏感质量占比、驱/检模态运动易解耦的高灵敏特点,而后者对加速度/振动、温度等外界环境干扰具有固有免疫特性。对此,本文提出了一种利用并联双环结构将四个正交布置的线振动陀螺模态进行强关联的共耦微机械陀螺仪,以期构建出一类线振动模态和环振动模态共存的全新耦合形式,从而使陀螺仪达到同时兼备高精度与强环境鲁棒性的高性能特征。因而,本文针对该
脱氧核糖核酸(deoxyribonucleic acid,DNA)是引导生物体生长发育及生命机能运作的重要生物大分子,是大多数生物体的遗传物质。单链DNA分子的杂交检测在临床医学上对于疾病诊断、基因检测和环境中生物试剂检测有重要意义。目前,以光学检测、电学检测和电化学检测为主的无标记检测DNA分子的方法因为比有标记检测更方便快速而受到广泛研究。其中,电学检测方式简单,成本较低,是当前一种比较普遍的
本文主要运用经典方法(凝固系数法)和A-调和逼近法研究非线性椭圆方程组在不同结构条件下弱解的部分正则性问题。主要内容包括三个部分。第一部分为第三章,用经典方法研究次二次非线性椭圆方程组在可控增长条件下弱解的部分正则性,包括区域内部和边界上。第二部分为第四章,用.4-调和逼近法研究具有VMO-系数的次二次非线性椭圆方程组的内部正则性,包括齐次和非齐次的情况在自然增长和可控增长条件下的部分正则性。第三
随着通信、传感和定位技术的快速发展,设备价格逐步降低以及社会和市场需求的强劲推动,和移动对象位置感知相关的应用呈现迅猛发展,而且在未来将成加速趋势。而随着时间的推移,空间和时间均可能变化的移动对象将累积大量的历史轨迹数据,对这些数据进行存储、管理和利用,发掘其中有用的信息,可为企事业单位的生产运作管理、政府部门的公共服务、居民的日常生活安排提供更加量化与科学的决策帮助,因此是大数据战略的重要内容和
时空编码磁共振成像(spatiotemporally encoded MRI,SPEN MRI)是一种新型的超快速磁共振成像技术。该方法保留了回波平面成像序列快速采样的特性,并能够有效地克服不均匀磁场和化学位移引起的畸变或伪影,有着广阔的临床应用前景。由于特殊的二次相位编码机理,SPENMRI图像不能通过常规的快速傅里叶变换进行图像重建。超分辨率重建(super-resolved reconstr
双组份系统是许多微生物体内非常重要的信号转导系统。该系统一般包含两个组份:组氨酸激酶和应答调节蛋白。组氨酸激酶可以感应周围环境中的刺激,将自身一个进化保守的组氨酸残基磷酸化,然后将产生的高能磷酸基团转移到与自身配对的应答调节蛋白。应答调节蛋白的磷酸化位点是进化上保守的天冬氨酸残基。应答调节蛋白磷酸化后,效应结构域的构象发生改变而处于活化状态,这样可以使调节结构域发挥功能,对环境中的刺激做出反应。微
Helmholtz方程是一个重要的数学物理方程,通常出现在涉及同时存在空间和时间依赖的偏微分方程的物理问题的研究中.电磁场中的波导问题、噪声的控制、薄膜振动等问题都是由Helmholtz方程控制的.基解方法(The Method of Fundamental Solutions,简称MFS)是解某种椭圆型边值问题的一种方法,可以被看作是一种间接边界元方法.在这个方法中,问题的解通过一组依据问题区域
在微分几何中,Laplace算子在调和积分理论和Bochner技巧中起着重要的作用.近二十年来,在著名的几何学家陈省生先生的倡导下,实和复Finsler流形上的整体微分几何取得了显著的进展.Laplace算子在Finsler流形上也起着重要的作用.到目前为止,实Finsler流形上的Laplace算子的研究已经取得了许多成果,复Finsler流形上的Laplace算子的研究也有一些结果.本文的目的