论文部分内容阅读
钒是重要的战略物资,被称为“现代工业的味精”,广泛应用于钢铁工业、化学工业、航空航天工业、轻纺工业和医学等领域。钒在自然界中主要赋存在钒铁磁铁矿中,我国攀枝花地区拥有丰富的钒钛磁铁矿资源。而从钒铁磁铁矿中回收钒资源的常用工艺是还原钒铁磁铁矿获得含钒铁水,接着含钒铁水中的钒氧化进入渣中,之后通过湿法工艺从钒渣中提取V2O5。从含钒铁水中提取钒的方法有摇包法、铁水包、雾化法、转炉法。我国和俄罗斯都采用转炉提钒工艺。经过多年努力,攀钢在钒资源的开发和利用方面取得了不错的成绩,但现工艺流程下钒的回收率小于其它国家,钒渣品位、钒氧化率等均有待提高。另外,针对铁水中[V]含量约为0.3%的转炉提钒研究报道较少。因此有必要摸清低钒铁水提钒机理及影响因素。自动控制模型在转炉炼钢上已经成功应用,但是由于冶炼时间短,提钒转炉没有副枪、烟气检测设备,转炉提钒控制处于静态控制状态。而我国的提钒操作仍采用人工手动操作,完全凭借操作工人的经验来控制,这导致半钢、钒渣质量不稳定。因此开发一款适用于我国特色的提钒控制模型是适应时代要求的。针对我国转炉提钒工艺上存在的问题,开展了基础研究,得到以下结论:①转炉提钒热力学研究,发现铁水中的钒主要被氧化成V3+,也有少部分被氧化成V2+;钒渣中的铁有Fe2+、Fe3+两种形式。渣中FeO的活度和活度系数随渣中MnO、FeO含量的增加而增加,随渣中V2O3、SiO2、TiO2含量的增加而减小,其值分别在10-1和100的数量级上,而渣中V2O3的活度及活度系数在同样条件下的变化趋势则与FeO相反,其值分别在10-2和10-1的数量级。②转炉提钒动力学研究,发现铁水中Si对C和V的氧化均由较强的抑制作用,铁水初始Si含量升高将使得铁水中C和V的氧化速率明显降低,并导致终点铁水V含量高;铁水初始V含量增加将使其自身被氧化减少的速率加快,同时对铁水中C的氧化有微小的抑制作用使其减少速率减慢,并且终点铁水V含量将升高;温度升高使得C被氧化的速率大幅度加快,同时使铁水中V被氧化速率明显减缓;出渣中FeO的快速生成可以促进C、V氧化。③提钒用冷却剂的冷却效率研究发现采用DSC来研究固体高温时的比热是可行的,且结果比较准确。冷却剂的冷却能力顺序为:冷固球团>绝废渣>钒渣>生铁。冷却剂在不同终点温度下的冷却效应可以为转炉提钒工艺的优化提供指导。④无烟煤的理论分析研究指出,无烟煤加入时间不同具有不同的功用:前期加入可以提高半钢温度,同时达到增碳的目的;后期加入无烟煤则可以改善钒渣TFe含量。但是两种加入方式都会使得半钢残V含量略高。数据统计分析发现,1t脱硫铁中加入1kg无烟煤可以增碳0.03%,提温7.35℃;而普通铁则可以增碳0.025%,提温4.83℃。⑤提钒转炉物料平衡与热平衡研究指出,物料平衡测定结果误差为-0.86%~2.88%,热平衡测定结果误差为-3.12%~3.94%。研究发现留渣操作对提钒的影响很大,随着留渣次数的增加,吹炼损失减少。⑥采用神经网络法,结合前面对提钒工艺相关参数的研究,构建了转炉提钒控制模型,包括冷却剂模型、供氧模型、终点预测模型三个字模型。模型编程语言是C++。最后建立了仿真模型,模型训练结果说明该模型基本满足提钒冶炼控制要求。