稀土掺杂磷酸钇锶的光谱调控及发光性能的研究

来源 :内蒙古大学 | 被引量 : 0次 | 上传用户:wzx85695021
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
人们认为白光LED是一个节能、寿命长、全固态、环境友好的新光源。基于目前紫外LED芯片的荧光粉发射光谱中红色成分不足,如何实现光谱调控等问题备受关注。改进红光成分不足有两种途径:一种是开发新的材料,另一种是在现有的材料基础上,引入其它稀土离子。由于磷酸盐基质材料的荧光粉具有低色温、成本低、易获得等优势,本论文选择以磷酸钇锶作为研究对象,其研究结果如下:(1)第一部分是将Eu2+离子掺杂在基质Sr9Y(PO4)7中,随着Eu2+离子的浓度逐渐增大,当Eu2+离子的掺杂浓度为0.04时,峰值达到最大。在近紫外光365nm激发下,Sr9Y(PO4)7:Eu2+荧光粉样品发出黄绿光。变温发射光谱显示,温度达到423K时,相对发射强度占303K时的68.4%。(2)第二部分研究了Sr9Y(PO4)7:0.04Eu2+,x Mn2+(x=0.03,0.05,0.07,0.10,0.15,0.20)的发光性能。当激发波长为365nm时,Eu2+离子和Mn2+离子共掺杂在Sr9Y(PO4)7荧光粉中,随着Mn2+离子含量增加,可以得到从黄绿色、黄色到橙红色的可调颜色。(3)第三部分制备了Sr9Y(PO4)7:0.15Ce3+,zEu2+(z=0.01,0.03,0.05,0.07,0.09),在340nm激发下,根据发射光谱可见,Ce3+离子的浓度不变,Eu2+离子的浓度增加,当Eu2+离子的浓度为0.05时,Ce3+离子发光强度最强。
其他文献
利用低维纳米材料中存在的量子限制效应,研究人员创造出了性能显著的一系列光电子器件。在研究光电子器件和光伏材料的性能时,激子的形成、分离和复合是必须要考虑的。本论文利用多体微扰理论和Bethe-Salpeter方程,研究了几种碳纳米材料的电子能带结构和包含激子效应的光性质。具体内容包括以下几个部分:(1)手性石墨烯纳米带(CGNRs)中的激子态。研究结果表明对于(2,1)、(3,1)、(4,1)、(
学位
<正>梅州市位于广东省东北部,是全球最具代表性的客家人聚居地之一,被誉为“世界客都”,也是叶剑英元帅的故乡、著名革命老区、海峡两岸交流基地。该城市有“国家历史文化名城”“中国美丽山水城市”等美誉,是当之无愧的华侨之乡。梅州市人民医院(简称“梅医”)创建于1896年,是中国历史最悠久的西医医院之一,其前身是瑞士巴色差会创办的德济医院。建成之初,医院只有一间小房子,历经120多年的发展,
期刊
TiN具有较高的硬度和耐磨性、低电阻率以及耐腐蚀性等优势,在切削涂层、新型陶瓷、航天器件、医用材料等方面应用较广。随着现代工业发展,需要TiN薄膜具备更高,更均衡的性能来满足当前工业应用的所有要求。通过掺杂第三种元素是提高TiN薄膜性能的一种途径,稀土元素由于其较高的活性和较大的原子半径,在薄膜中掺杂稀土元素是提升材料性能的有效方式。然而稀土元素掺杂TiN薄膜的改性研究较少。本文研究了Ce和Yb两
学位
急性髓系白血病(Acute Myelogenous Leukemia,AML)又称血癌,在造血系统的恶性肿瘤疾病中最常见,并且在成人群体中最常见类型为急性髓系白血病。随着测序技术的发展以及数据的量变以及开放,越来越多的研究表明,表观遗传修饰的异常变化会直接或间接抑制或沉默基因表达,包括组蛋白修饰和DNA甲基化等修饰,并且急性髓细胞白血病在表观遗传方面也有了一定的研究,并且在临床治疗取得肯定的疗效。
学位
珍珠菇是一种珍稀的食用菌,富含膳食纤维、粗蛋白、维生素和多种氨基酸,具有提高免疫力、抗癌、缓解肌肉酸痛等优点,且味道鲜美,口感顺滑,受到消费者强烈的欢迎,具有较高的经济价值和实用价值。为了拓展其育种方法,创造优质资源,本文以珍珠菇原生质体为出发材料,拟通过电晕电场诱变方法的优化,以及诱变后的珍珠菇菌丝体的生长速度、漆酶、蛋白酶、纤维素酶的活性变化,探究珍珠菇诱变育种的新技术和思路。实验结果如下:1
学位
元器件的微型化和小型化需求使磁电耦合材料的研究由块体转向了薄膜。磁电耦合薄膜材料在弱磁探测、磁电传感器、高密度信息存储器等微纳电子设备领域具有广泛应用,吸引着一批又一批的科研人员对其进行探索,时至今日已成为凝聚态物理重要的研究领域。磁电复合薄膜相比于磁电单相多铁材料在磁致伸缩相和压电相的选择上以及界面耦合调控方面有非常大的开放性,有望获得室温高强度的耦合效应,特别是2-2型磁电复合薄膜更容易满足器
学位
人类慢性髓系白血病(chronic myelogenous leukemia,CML)是一种起源于多能造血干细胞的恶性疾病。研究表明,转录因子及组蛋白修饰在基因组中结合模式的紊乱与CML的发生密切相关。因此,本文以人类慢性髓系白血病淋巴细胞系(K562)和人类正常B淋巴细胞系(GM12878)为研究对象。挖掘了与CML相关的重要组蛋白修饰和转录因子,并探究了组蛋白修饰执行其调控作用的重要功能区域。
学位
任何量子系统都不可避免地会与周围的环境发生相互作用,也就是说任何实际的量子系统都是开放的,如果存在信息从环境到系统的回流,就称为非马尔可夫动力学。我们知道,碰撞模型是研究非马尔可夫动力学的重要工具之一,并且在量子光学、量子热力学等领域得到了广泛应用。马尔科夫近似在大多数情况下是合理的,但有些情况必须考虑非马尔科夫过程,碰撞模型可以有效的处理非马尔可夫动力学。研究发现,通过引入系统环境初始关联等方法
学位
Cu2Zn Sn(S,Se)4(CZTSSe)薄膜太阳能电池因其具备带隙可调、吸光系数高、组成元素储量丰富、价格低廉、无毒无污染以及良好的稳定性等优势,被认为是未来最具有发展潜力的薄膜太阳能电池之一。然而目前其效率相比Cu(In,Ga)Se2太阳能电池仍相差甚远。经研究表明,高质量的吸收层与合理的器件结构是制备高效CZTSSe太阳能电池的基础。本论文系统地研究了阳离子成分调控及窗口层结构对CZTS
学位
氮化硼纳米材料因具有高温稳定性、低介电常数、较大的导热系数和抗氧化性,适用于电子器件、高耐热半导体、有毒气体传感器、绝缘体润滑剂和储氢材料,在材料科学、电子学等领域具有潜在的应用价值。零维纳米材料——氮化硼团簇由于其独特的物理化学性质,引起了人们的研究兴趣。团簇也可用作组装材料的基本构建单元,通过控制团簇的结构和性质可以得到人们所期望的团簇组装材料,并且这些具有优异性能的团簇组装材料对制备可控性能
学位