层状双金属氢氧化物/碳纳米管杂化复合材料的制备、结构及其性能研究

被引量 : 6次 | 上传用户:pipipipi9
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
自从1991年被发现以来,碳纳米管(CNTs)独特的结构和优异的物理、化学性能,使得碳纳米管基复合材料的研究中受到广泛关注。CNTs大的比表面积、高的长径比的结构特点以及热稳定性,使得CNTs在载体方面,特别是催化载体方面成为广泛的研究热点。基于其优异的导电性能和生物兼容性能,CNTs在电化学方面,包括电极材料、传感器等方面也具有广泛的应用。而且经过研究表明,在一维纳米结构上,CNTs具有高的机械强度,其杨氏模量和强度分别为1 TPa和20 GPa,是钢铁的5倍和100倍,而密度仅为钢的六分之一到七分之一,因此CNTs常被用做材料的增强剂。但是原质的CNTs表现化学惰性,不易溶于常见溶剂,也难以在基体中分散或者与基体复合,这样的弊端成为制备稳定的、结构均一的CNTs基复合材料的瓶颈。鉴于这个问题,CNTs表面的化学修饰处理已成为国际上CNTs科学研究的一个重要领域。化学修饰包括非共价键和共价键的方法,它会在CNTs表面修饰上各种功能基团,不仅有利于提高其在溶剂中的分散性,而且也有利于与其它物种的反应。层状双金属氢氧化物(LDHs)是一类阴离子型层状无机功能材料。在LDHs晶体结构中存在着晶格能最低效应及晶格定位效应,金属离子在LDHs层板上以一定方式均匀分布,形成了特定的化学组成和结构。LDHs在化学组成和微观结构上具有均匀性与可调控性的特点,因此这类材料在催化材料、催化载体、吸附剂、电化学、药物缓释剂、阻燃剂等方面具有很广泛的应用。经过高温焙烧后,LDHs层板坍塌,生成金属氧化物或者尖晶石相,这类材料在催化、吸附等领域也有重要的应用,因此说LDHs也是制备催化剂、吸附剂的优良前体。但是LDHs纳米粒子会发生团聚,而且在升温焙烧过程中,LDHs层板逐渐坍塌、颗粒间烧结团聚,这些都会导致LDHs或者焙烧后的产物分散性差、比表面降低、活性中心数目减少的弊端,也在很大程度上限制LDHs材料作为功能材料前体的应用。为了克服这一缺点,提高LDHs晶粒及焙烧产物的分散性、减少活性粒子的聚集,本文采用不同的方法将不同组成的LDHs负载在CNTs表面,制备了一系列的杂化结构的LDHs与CNTs的复合材料(LDHs/CNTs),从而提高LDHs的分散性,并且降低焙烧产物的团聚,暴露较多的活性中心,以增强其活性。而且CNTs的结构和性能也有利于复合物的性能。利用酸修饰后呈电负性的碳纳米管表面和电正性的NiAl-层状双金属氢氧化物(NiAl-LDH)层板之间的静电作用,采用共沉淀的方法将NiAl-层状双金属氢氧化物原位组装在碳纳米管表面,得到NiAl-LDH与CNTs的复合物(NiAl-LDH/CNTs)。将NiAl-LDH负载在CNTs表面,能够提高NiAl-LDHs的分散性,而且随着复合物中CNTs含量的增加,NiAl-LDH在CNTs表面上的分散性提高,能够实现从CNTs表面上紧密地包裹着NiAl-LDH纳米粒子的形貌向CNTs表面零散的负载着NiAl-LDH粒子的形貌转变。由于NiAl-LDH层板与CNTs表面之间的静电作用导致NiAl-LDH与层间阴离子之间的作用力减弱,从而使金属离子和氧的电子结合能增加,大约增加1.8 eV。电催化氧化葡萄糖的性能表明将NiAl-LDHs负载在CNTs表面上后,复合物的电催化性能得到明显的提高,其电催化氧化峰电流值可以达到纯NiAl-LDH的8倍。这可能是因为一方面CNTs加速电子传递的特点有利于电催化反应的进行;另一方面,CNTs与NiAl-LDH之间的作用力有利于提高NiAl-LDH在电极表面的稳定性。除此之外,复合物在电极表面的网络结构也有利于反应物分子向电极表面的扩散。一方面,采用阴离子聚合物(聚苯乙烯磺酸钠,poly(sodium styrenesulfonate))修饰碳纳米管表面的方法制备ZnAl-层状双金属氢氧化物(ZnAl-LDH)与CNTs的复合物(ZnAl-LDH-p-CNTs)。聚苯乙烯磺酸钠通过π-π共轭作用均匀地修饰在CNTs表面,改性后的CNTs表面负电荷均匀分布,有利于金属阳离子在CNTs表面的固定及ZnAl-LDH在CNTs表面的成核生长。结果说明采用此方法能够得到结构均一、分散性好的复合物。另方面,以L-半胱氨酸(L-cysteine)为桥联剂,采用桥联的方法将ZnAl-LDH负载在CNTs表面。在水溶液中,L-半胱氨酸能够发生电离生成电正性的-NH3+和电负性的-COO-基团,它们通过静电作用或者配位作用分别与电负性的CNTs表面和组成ZnAl-LDH层板元素的金属阳离子相结合,然后通过调节溶液的pH,在CNTs表面成核生长ZnAl-LDH纳米粒子,从而得到稳定性好、结构均一的ZnAl-LDH与CNTs的复合物(ZnAl-LDH-cy-CNTs)。研究结果表明:L-半胱氨酸作为一种桥联分子不仅能够增强ZnAl-LDH纳米粒子与CNTs表面之间的相互作用,提高ZnAl-LDH纳米粒子在CNTs表面的分散性,而且能够抑制ZnAl-LDH晶粒的生长。由于ZnAl-LDH与CNTs之间的相互作用力,Eu(Ⅲ)配合物插层的ZnAl-LDH(EY)-cy-CNTs复合物出现了荧光淬灭的现象。以甲基橙染料分子光降解为模型反应,性能测试结果表明复合物结构能够增强其紫外光条件下的光降解性能。以L-半胱氨酸桥联法制备的CoAl-LDH与CNTs复合物(CoAl-LDH-cy-CNTs)为前体,在N2气氛下焙烧500℃后,CoAl-LDH转化为CoO和COAl2O4混合氧化物,得到CoAl-金属氧化物(ZnAl-MMO)与CNTs的复合物(CoAl-MMO-cy-CNTs)复合物,并研究其对高氯酸铵分解的热催化性能。前体合成过程中L-半胱氨酸的投料量影响复合物前体中CoAl-LDH在CNTs表面的分散状态,进而影响焙烧产物的组成。CoAl-MMO-cy-CNTs复合物表现了很好的CNTs和CoAl-金属氧化物的催化协同效应,能够使高氯酸铵分解温度降低至271.3℃,分解速率提高至13.0 mg/min。
其他文献
<正>桥本氏甲状腺炎(Hashimoto’s Thyroiditis,HT)是一种常见的自身免疫性甲状腺疾病,也称慢性淋巴细胞性甲状腺炎,由日本桥本策1912年首先报道得名。好发于30~50岁女性。病
近年来,我国高等教育机制改革不断深化,以健全大学生核心素养及红色精神培养的思想政治教育模式受到了学者的关注。在互联网开放创新环境中,培养大学生形成&#39;红色精神&#39
改革开放的持续深化大幅提升了我国总体经济实力和综合国力,在加快我国向小康社会迈进的同时,我国也进入了急剧的社会转型期。所有制结构、组织形式、就业方式、利益关系、分
自主式水下机器人(Autonomous Underwater Vehicles,简称AUV)是当今机器人研究领域最热门的话题之一,它在海洋调查,资源勘探以及军事领域有着广泛的应用前景。AUV的智能化水
随着人们对生活质量要求的提高和环境保护的需要,天然气作为一种清洁能源,正得到大力推广使用。在我国大力建设燃气管网干线全面进入“天然气时代”的同时,存在着一些亟待解
随着我国工业现代化发展,传统陶瓷工业面临转型;随着城市化的房地产高速发展,同时带动了与房地产相配套的建筑陶瓷工业。为满足市场的需求,提高建筑陶瓷生产量和高附加值,在
光纤光栅是20世纪70年代产生的一种新型光纤器件,由于它具有体积小、成本低、插入损耗小、滤波特性好与光纤系统天然兼容等诸多优点,在光纤通信、光纤传感和光学信息处理等领
目的:观察补肾化痰丸合地塞米松治疗耐克罗米酚(CC)的多囊卵巢综合征(PCOS)不孕症患者的临床疗效。方法:将80例耐CC的PCOS不孕症患者分为对照组和治疗组各40例,对照组给予小
律师民事责任是个实践性很强的论题,由于我国律师队伍的不断壮大,人们法律意识的不断提高,律师承担民事责任的案件也频频发生,有的赔偿金额甚至达到千万。我国有关律师民事责
近年来脱水加工洋葱产品在国际市场上十分畅销,加之我国蔬菜加工企业的快速发展,对加工型白皮洋葱的需求巨大和栽培面积不断扩大。我国种植的洋葱品种以鲜食的红皮或黄皮居多