Si3N4-MoSi2复合陶瓷与Nb真空钎焊工艺与机理

来源 :天津大学 | 被引量 : 0次 | 上传用户:viviane_px349
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Si3N4-MoSi2复合陶瓷是以Si3N4陶瓷作为基体,MoSi2第二相作为增强相的新一代结构陶瓷材料。因其具有高强度、良好的抗热震性、较高的室温断裂韧性、优异的高温性能、抗氧化性和耐腐蚀性,常应用于涡轮发动机部件等一系列复杂服役环境。但在实际应用过程中,大型或复杂的陶瓷部件不适合整体制造,往往需要与Nb等高温金属连接。本文采用真空钎焊工艺实现Si3N4-MoSi2复合陶瓷与Nb的可靠连接,采用Ag Cu Ti钎料和Ti Zr Ni Cu钎料,并分别在二者中添加MoSi2颗粒制备复合钎料以改善接头性能。采用Ag Cu Ti钎料钎焊Si3N4-MoSi2复合陶瓷与Nb时,880℃-10 min工艺参数条件下,接头的典型组织为:Nb/Ti Cu/Ag(s,s)+Cu(s,s)+Ti Cu/Ti5Si3+Ti N+Mo5Si3/Si3N4-MoSi2。与单相Si3N4陶瓷实验结果相比,Si3N4-MoSi2复合陶瓷在钎焊过程中,钎料中的Ti元素与复合陶瓷反应形成了Mo5Si3+Ti N+Ti5Si3复合反应层。随着钎焊温度增加、保温时间延长或Ti含量的提升,钎焊接头抗剪强度均呈先增加后减小的趋势,最佳抗剪强度达129 MPa。为缓解接头残余应力,提高接头力学性能,在Ag Cu Ti钎料中添加MoSi2颗粒制备复合钎料(Ag Cu Ti+MoSi2p),当MoSi2颗粒质量分数为6wt.%时,接头抗剪强度达到最大值为154 MPa,比采用单一Ag Cu Ti钎料获得的接头强度提高了20%。为了提高接头的高温性能,采用Ti Zr Ni Cu钎料对Si3N4-MoSi2复合陶瓷与Nb进行真空钎焊,并以同样方法制备复合钎料(Ti Zr Ni Cu+MoSi2p),研究了MoSi2增强相对接头界面组织及性能的影响。920℃-10 min的工艺参数条件下,典型界面组织为:Nb/β-Ti+(Ti,Zr)5Si3+(Ti,Zr)2(Cu,Ni)/Ti N+(Ti,Zr)5Si3+MoSi2/Si3N4-MoSi2。当采用Ti Zr Ni Cu钎料时,获得接头的室温抗剪强度最高为112 MPa。当复合钎料中MoSi2颗粒质量分数为4wt.%时,接头室温性能最佳为133 MPa,提升了19%。综合对比两种钎料以复合钎料获得接头的高温性能,当测试温度达到500℃和600℃时,采用Ti Zr Ni Cu所得接头的抗剪强度远高于采用Ag Cu Ti所得接头的抗剪强度。
其他文献
以锂和钾为代表的碱金属负极由于具有极高的理论比容量(Li:3860 m Ah g-1,K:685 m Ah g-1),极低的氧化还原电位,有望替代目前商业电池中低容量的石墨负极,具有非常可观的发展前景。然而,在充放电过程中,碱金属负极表面不均匀的离子流容易引起金属不均匀沉积,造成不可控的枝晶生长,使电池产生安全隐患。为了解决这些问题,实现碱金属负极在高比容量电池中的实际应用,重点在于调控金属离子的
学位
在脑肿瘤治疗中,血脑屏障(BBB),血脑肿瘤屏障(BBTB)的存在以及化疗药物引起的组织毒性仍然对有效治疗神经胶质瘤的生物相容性药物递送系统提出了极大的挑战。PAMAM树状分子是高度支化的大分子,被视为球状蛋白质的合成生物模拟物,具有可控制的纳米尺寸,单分散性和较大的疏水性内腔,可用于封装疏水性药物,尤其是具有可定制的表面基团和功能。其独特的结构特征使其成为负载疏水性药物和结合靶向分子的理想药物载
学位
糖尿病会造成活性氧(ROS)在心脏部位更严重的聚集,导致更为严重的炎症微环境环境,因而糖尿病患者的心肌梗死治疗对生物材料设计提出了更高的挑战。大量研究表明可注射水凝胶有希望成为治疗心肌梗死的一种新型材料,但是目前还未有针对于糖尿病患者心肌梗死的可注射水凝胶。因此,本文建立了一种可以逆转受损的糖尿病心肌微环境的多功能可注射水凝胶体系。首先,合成了超支化的聚(β氨基酯)(PAE-PBA),其富含丙烯酸
学位
过氧化氢(H2O2),一种环境友好型的强氧化剂,其应用范围覆盖了从污水处理,工业漂白到化学合成和医疗消毒的各行业,其市场需求也使得过氧化氢的合成受到了广泛的关注。传统的过氧化氢合成方式为蒽醌法,但该方法有着能耗高,污染大,生产出的高浓度过氧化氢运输危险等问题。而电化学氧阴极还原合成过氧化氢作为一种理想的替代方法,有着无污染,原子利用率高,可现场合成等优点,因此引起了国内外研究学者的广泛关注。但是该
学位
镁合金具有密度低、导热性好、抗冲击性好、比强度高、比刚度高和生物相容性好等特点,在汽车、军工、航空航天、生物医疗和3C行业等领域具有广阔的应用前景。电弧增材制造(wire arc additive manufacturing,WAAM)可以缩短复杂结构件制造周期,实现小批量快速制造。使用基于冷金属过渡(cold metal transfer,CMT)技术的WAAM方法进行镁合金零部件的制造,可以有
学位
金属-空气电池和电催化分解水技术被认为是未来解决能源危机和环境污染的重要手段。其中,由于氧还原反应(oxygen reduction reaction,ORR)、氧析出反应(oxygen evolution reaction,OER)和氢析出反应(hydrogen evolution reaction,HER)复杂的反应途径和较大的过电位导致其动力学反应过程缓慢,严重阻碍了金属-空气电池和电解水技
学位
由于潜在的生物降解性、相容性以及良好的机械性能,近年来脂肪族聚酯受到了学术界和工业界的广泛关注。在合成聚酯的众多方法中,环氧烷烃和环酸酐的开环交替共聚(Ring opening alternating copolymerization,ROAC)由于其原子经济性、可控性良好、单体来源广泛等优点而备受关注。寻找高活性和优异选择性的催化体系一直是该领域的研究热点。基于此,本论文以市售的碱金属羧酸盐为简
学位
近年来,由共轭聚合物给体和小分子受体组成的有机太阳能电池(OSC)迅速发展,其能量转换效率(PCE)已经突破18%。但是,有机太阳能电池的活性层通常具有较差的热稳定性,这将限制其实际应用。当加工温度高于活性层共混薄膜的玻璃化转变温度时,小分子受体会发生运动,形成微米尺度聚集体,导致OSC器件性能衰减。鉴于此,本论文在活性层中引入具有高玻璃化转变温度(Tg)的绝缘聚合物聚苊(PAC),提高活性层的玻
学位
第三代半导体材料由于具有耐高温、输出功率大、以及击穿电压高等特点,使得电子元器件在新能源汽车、飞机、航空航天等超过250℃的高温条件下工作成为可能。然而,传统的封装互连材料不能满足电子元器件在高温条件下稳定工作的要求,烧结银作为一种新型的封装互连材料凭借其高熔点、高热导率和高电导率受到了人们的广泛关注,但是高成本且易发生电迁移等缺陷限制了其在元器件中的应用。铜具有成本低、导电性能好、抗离子迁移能力
学位
硼酸铝材料由于其独特的性质如高强度、高模量、耐高温、耐腐蚀、热导率低、中子吸收能力强在无机材料领域中扮演着极其重要的角色,近年来,硼酸铝材料已经被广泛应用于高温结构部件,电子陶瓷,增强复合材料以及电磁波屏蔽材料等,尤其在高温隔热领域有着广阔的潜在应用价值。然而,目前国内外对于纯硼酸铝材料的研究相对较少,且多集中于以针状硼酸铝晶须为主体骨架结构的多孔陶瓷。而由于针状硼酸铝晶须长径比小,填充率高,使得
学位