论文部分内容阅读
桩基础具有强度高、沉降小、可跨越复杂地质条件等优点而广泛应用于路基和桥梁的下部基础,其工作性能主要依赖于桩-土相互作用。倾斜地层中桩周土的应力场不再呈轴对称分布,且同一承台下不同位置的桩基会出现桩-土摩擦长度不同的情况;在交通动荷载作用下,倾斜地层中的振动波传播路径会发生改变,在斜边界处还可能引起反射波。已有研究中,桩基动力响应研究多针对水平成层场地展开,关于倾斜地层条件下桩基动力特性的研究尚不多见。本文采用模型试验,数值模拟和理论分析结合的方法,对倾斜地层中桩基动力响应特性、动荷载传递机理、波传播特性及桩-土-桩动力相互作用机理与群桩动响应计算方法等进行了系统研究,着重讨论了地层倾斜对动力响应的影响和机理,并提出了倾斜地层条件桩基动力响应简化计算方法。本文开展的主要工作和取得的成果如下:
①开展了循环动荷载作用下水平地层,斜坡和倾斜基岩场地中的单桩动力特性模型试验研究,揭示了倾斜地层桩基在不同中值荷载,不同动力幅值,以及不同加载频率的组合竖向荷载作用下的动力响应特性机理,分析了桩顶动位移,桩身动应变,桩底土压力的变化规律。研究结果表明,场地倾斜边界对桩身动位移幅值影响较小,但会明显改变土场地的动响应,使得桩周土响应出现方向性差异,且斜坡和基岩面倾斜边界对土响应的影响并不相同,主要表现在:倾斜基岩条件下,位于倾斜上侧的土位移大于同深度处倾斜下侧的位移,倾斜基岩边界的影响随土体深度增加而变大;斜坡场地条件对土体位移的影响主要在地表一定深度范围内,且随深度增加而减弱,位移响应的方向性差异与土体到桩轴的径向距离有关,径向距离较小时,位于坡脚一侧的土体位移更大,而径向距离超出一定范围后,坡顶一侧的土体位移会超过坡脚。
②开展了倾斜地层条件下群桩动力特性模型试验研究,试验结果发现,地层倾斜条件下承台不同位置的振动有所区别,斜坡群桩承台下坡一侧振动较上坡侧剧烈,承台坡底方向的动位移出现“放大效应”,振动呈非对称分布。随后,针对试验观察到的倾斜地层群桩承台差异振动现象,通过有限元数值计算方法研究了差异振动的原因,揭示了倾斜地层群桩荷载传递机理。结果表明,倾斜地层条件下群桩承台的差异振动是由下部桩基的差异振动引起,而倾斜地层群桩中出现差异振动原因是不同位置处的桩身自由段,摩擦段和桩底土厚度三者的数值和比例不同,导致同一承台下不同桩基的荷载传递和位移变形有明显差异。在此基础上,研究了不同桩长和不同桩土模量比条件下倾斜基岩场地和斜坡场地的动位移和轴力随深度变化规律,探讨了不同条件下倾斜边界对桩基动力响应特性的影响。
③开展了斜坡场地振动波传播特性和桩-土-桩动力相互作用机理数值模拟研究。用有限元方法计算出振动桩周围土场地不同深度处的位移峰值和到达时间,并将上述两各物理量转换为振动问题常用的幅值和相位,与水平场地振动波衰减的三维解析公式进行了比较研究,结果吻合较好。在此基础上,开展了斜坡地层振动波传播路径的研究,结果表明,斜坡场地振动波传播路径具有明显的方向性,上坡方向振动波衰减快于下坡方向;总体上,朝上坡方向的振动波以水平传播为主,对土场地的影响也接近水平地层中的情况,而部分朝下坡方向振动波的传播路径发生偏折,不再沿水平方向。进一步地,开展了斜坡场地主动桩和被动桩双桩相互作用研究,结果表明,被动桩引起的波发散不可忽略,且斜坡场地桩基受周围振动桩基的影响程度仍主要由该桩与土的接触面积决定。
④展开交通动荷载下倾斜基岩面条件对群桩动响应特性,荷载传递规律和群桩相互作用机理的有限元数值计算研究。结果表明,受嵌岩深度变化的影响,倾斜基岩面群桩承台出现明显的差异振动现象,位于倾斜面下侧的承台响应大于倾斜上侧。另外,倾斜基岩条件下,振动波向倾斜上侧传播与下侧传播时对被动桩的影响程度不同:倾斜下侧被动桩中的位移与水平基岩面中较为接近;振动波向倾斜上侧传递时,部分振动能量会被动阻抗更大的基岩吸收,使得振动减弱,故倾斜上侧被动桩的位移略小于水平基岩。
⑤分别开展了基岩边界对单桩动力响应影响的计算方法研究,以及斜坡场地条件下的群桩动力响应计算方法研究。结果发现,桩基竖向阻抗会以水平无限地层条件下的桩基阻抗曲线为基线发生波动,波动的幅度和频率与桩基到基岩边界的距离关系密切,桩基距离基岩越近,波动频率越小,但波幅越大。另外,还基于结论③揭示的斜坡桩-土-桩动力相互作用机理,建立了斜坡双桩动力相互作用计算模型,推导了考虑地形效应的桩-桩相互作用因子,得到了斜坡群桩竖向动力阻抗的简化计算方法。计算结果表明,地形效应表现在三个方面:一是坡顶方向和坡底方向传播的桩-桩相互作用因子不同,坡顶方向略大于坡底方向;二是不同斜坡角度下的桩-桩相互作用因子也不同,坡角越大,地形效应越显著;三是斜坡角度对动阻抗频率曲线峰值影响明显,且桩间距越大,地形影响越显著。
①开展了循环动荷载作用下水平地层,斜坡和倾斜基岩场地中的单桩动力特性模型试验研究,揭示了倾斜地层桩基在不同中值荷载,不同动力幅值,以及不同加载频率的组合竖向荷载作用下的动力响应特性机理,分析了桩顶动位移,桩身动应变,桩底土压力的变化规律。研究结果表明,场地倾斜边界对桩身动位移幅值影响较小,但会明显改变土场地的动响应,使得桩周土响应出现方向性差异,且斜坡和基岩面倾斜边界对土响应的影响并不相同,主要表现在:倾斜基岩条件下,位于倾斜上侧的土位移大于同深度处倾斜下侧的位移,倾斜基岩边界的影响随土体深度增加而变大;斜坡场地条件对土体位移的影响主要在地表一定深度范围内,且随深度增加而减弱,位移响应的方向性差异与土体到桩轴的径向距离有关,径向距离较小时,位于坡脚一侧的土体位移更大,而径向距离超出一定范围后,坡顶一侧的土体位移会超过坡脚。
②开展了倾斜地层条件下群桩动力特性模型试验研究,试验结果发现,地层倾斜条件下承台不同位置的振动有所区别,斜坡群桩承台下坡一侧振动较上坡侧剧烈,承台坡底方向的动位移出现“放大效应”,振动呈非对称分布。随后,针对试验观察到的倾斜地层群桩承台差异振动现象,通过有限元数值计算方法研究了差异振动的原因,揭示了倾斜地层群桩荷载传递机理。结果表明,倾斜地层条件下群桩承台的差异振动是由下部桩基的差异振动引起,而倾斜地层群桩中出现差异振动原因是不同位置处的桩身自由段,摩擦段和桩底土厚度三者的数值和比例不同,导致同一承台下不同桩基的荷载传递和位移变形有明显差异。在此基础上,研究了不同桩长和不同桩土模量比条件下倾斜基岩场地和斜坡场地的动位移和轴力随深度变化规律,探讨了不同条件下倾斜边界对桩基动力响应特性的影响。
③开展了斜坡场地振动波传播特性和桩-土-桩动力相互作用机理数值模拟研究。用有限元方法计算出振动桩周围土场地不同深度处的位移峰值和到达时间,并将上述两各物理量转换为振动问题常用的幅值和相位,与水平场地振动波衰减的三维解析公式进行了比较研究,结果吻合较好。在此基础上,开展了斜坡地层振动波传播路径的研究,结果表明,斜坡场地振动波传播路径具有明显的方向性,上坡方向振动波衰减快于下坡方向;总体上,朝上坡方向的振动波以水平传播为主,对土场地的影响也接近水平地层中的情况,而部分朝下坡方向振动波的传播路径发生偏折,不再沿水平方向。进一步地,开展了斜坡场地主动桩和被动桩双桩相互作用研究,结果表明,被动桩引起的波发散不可忽略,且斜坡场地桩基受周围振动桩基的影响程度仍主要由该桩与土的接触面积决定。
④展开交通动荷载下倾斜基岩面条件对群桩动响应特性,荷载传递规律和群桩相互作用机理的有限元数值计算研究。结果表明,受嵌岩深度变化的影响,倾斜基岩面群桩承台出现明显的差异振动现象,位于倾斜面下侧的承台响应大于倾斜上侧。另外,倾斜基岩条件下,振动波向倾斜上侧传播与下侧传播时对被动桩的影响程度不同:倾斜下侧被动桩中的位移与水平基岩面中较为接近;振动波向倾斜上侧传递时,部分振动能量会被动阻抗更大的基岩吸收,使得振动减弱,故倾斜上侧被动桩的位移略小于水平基岩。
⑤分别开展了基岩边界对单桩动力响应影响的计算方法研究,以及斜坡场地条件下的群桩动力响应计算方法研究。结果发现,桩基竖向阻抗会以水平无限地层条件下的桩基阻抗曲线为基线发生波动,波动的幅度和频率与桩基到基岩边界的距离关系密切,桩基距离基岩越近,波动频率越小,但波幅越大。另外,还基于结论③揭示的斜坡桩-土-桩动力相互作用机理,建立了斜坡双桩动力相互作用计算模型,推导了考虑地形效应的桩-桩相互作用因子,得到了斜坡群桩竖向动力阻抗的简化计算方法。计算结果表明,地形效应表现在三个方面:一是坡顶方向和坡底方向传播的桩-桩相互作用因子不同,坡顶方向略大于坡底方向;二是不同斜坡角度下的桩-桩相互作用因子也不同,坡角越大,地形效应越显著;三是斜坡角度对动阻抗频率曲线峰值影响明显,且桩间距越大,地形影响越显著。