锂硫电池有机硫化物正极材料的理论研究

来源 :上海工程技术大学 | 被引量 : 0次 | 上传用户:xmjxex
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
由于环境问题日益严重,化石燃料短缺,以及现代生活对可持续发展和环境友好性的高要求,环保储能已成为具有全球竞争力的新兴产业。储能升级已被认为是经济和社会发展的重要组成部分,开发更先进的储能设备势在必行。作为一种清洁和可再生的储能技术,先进的电化学储能在我们的日常生活中得到了广泛的应用,如便携式电子设备、智能电网、混合动力汽车和电动汽车,它们的日益普及使锂离子电池在过去几十年里受到了极大的关注。然而,进一步提高电池的能量密度,克服无机正极材料的容量限制(<250m Ah g-1),还需探索新的可充电锂电池正极材料。有机硫化物包括有机二硫化物和有机聚硫化物等,具有容量大、资源丰富、结构可调性强等优点。20世纪80年代,人们已经对几种硫化物,特别是有机二硫化物作为可充电锂电池的正极材料进行了一定程度的研究,然而与过渡金属氧化物正极材料相比,它们表现出较低的容量和较差的循环性能,阻碍了其发展。近年来,随着合成方法的多样化与合成技术的发展,各种结构的有机硫化物快速发展,并凭借其独特的结构与官能团在正极材料中发挥着重要作用。高硫含量使其能量密度提高,引入官能团形成的多硫化物吸附位点可以有效抑制穿梭效应,大基团形成的有机骨架增强了结构柔性,改善了体积膨胀问题,但是有机硫化物的氧化还原机理难以运用实验解释。我们将利用理论模拟从有机硫化物结构出发,分析充放电过程与电化学性能,探究氧化还原机理,为今后有机硫化物的结构设计提供参考,推动锂硫电池有机硫化物正极材料的发展。本论文分为以下四部分:(1)概述锂硫电池的结构和工作原理,及其优势与限制。总结锂硫电池正极材料的发展现状,就此提出其面临的主要问题并阐述不同的解决方案。(2)介绍应用于该论文理论研究的方法及重要参数。(3)二苯基多硫化物正极材料的研究。该类多硫化物的优势在于理论上杜绝了锂化过程中可溶性硫化物的生成,极大减缓了穿梭效应带来的容量衰减,本文将从键解离能和电荷密度差图等角度分析具体机理。(4)二吡啶基多硫化物正极材料的研究。该类多硫化物的优势在于其具有与二苯基多硫化物相同的分子量,但由于锂化过程中锂键的形成能够使更多的锂原子参与反应,相比于二苯基多硫化物每个分子多吸收/释放两个锂离子,大大提高了理论比容量。充放电过程的微观机理我们用搜索过渡态和IRC的计算来深入分析,并且运用NMR证明了锂键的形成。通过Py SLi2对Li2S4、Li2S6、Li2S8的吸附能计算,发现它们之间的吸附作用能够削弱穿梭效应,提高循环稳定性。
其他文献
低维碳纳米材料是目前科学技术发展过程中研究最丰富的领域之一。随着技术的发展,类碳纳米材料的研究也在不断深入,其中类碳纳米管和类石墨烯薄膜因具有独特的结构和物性,备受关注。本文主要基于密度泛函理论的VASP软件包和非平衡格林函数方法的Quantum ESORESSO软件包计算研究了低维类碳纳米结构的性质和应用,主要内容如下:1.基于密度泛函理论研究了g-C2O纳米管的几何结构、稳定性和电子性质。理论
学位
三维有序微孔碳,即沸石模板碳(ZTCs)由于其独特的孔隙结构、高比表面积、良好导电性及快速传输和扩散物质的能力,使其作为超级电容器电极材料方面表现出一定潜力。然而高效合成策略缺乏、孔隙结构优化及表面化学性质难调控严重制约ZTCs发展。本文采用硬模板法,以钴离子交换沸石(CoY zeolite)作为硬模板,再无其他辅助条件分别通过直接乙炔化学气相沉积和直接乙腈蒸汽化学气相沉积方式,制备出一系列有序微
学位
稀土元素拥有独特的电子壳层结构,特殊的结构使得其在光学领域有很多特性,能级跃迁的多样性使其具有很好的荧光特性,而且不同的结构使得稀土元素的荧光特性多种多样。目前,具有优异光学性能的稀土离子掺杂玻璃在光纤激光器、光纤放大器、太阳能电池等领域有着重要的发展前景。2~5μm的中红外光纤激光器在通信、环境监测、医疗、及国防军事等领域有着广泛应用价值。光纤激光器的研究离不开稀土离子掺杂玻璃的使用,发光玻璃主
学位
法科人才培养的根本与核心目标在于培养学生专业而娴熟的法律思维意识与能力。这是由法学及法律专业的强烈实践性所决定的。法律思维与法理思维、法治思维之间既相互区别又密切关联。法理思维为法律思维提供深厚的理论正当性基础,使其不断进步,法治思维则使法律思维适用于具有公共权力的人与组织所应秉持的法的敬畏、尊重、信仰、依从和捍卫思维,是法律思维在更广领域的拓展延伸。当下新文科理念战略对法科学生法律思维培养具有独
期刊
研究目的:本研究以改革开放以来我国学校足球相关政策的变迁为切入点梳理我国校园足球政策发展演进历程以及我国校园足球政策文本内容体系,用政策网络理论分析了我国校园足球政策网络的结构、我国校园足球政策网络互动特征。发现我国新校园足球政策网络形成历程可以明确显示政策结果并反馈给行动者甚至整个网络结构。在我国新校园足球政策面对新的阶段之际,其网络主体成员势必出现变化,新成员也将出现并改变原有政策网络结构,也
会议
随着环境污染和化石能源匮乏等问题的出现,发展高效的储能系统变得尤为重要。其中电化学储能技术在储能领域中占有不可替代的地位。锂离子电池是电化学储能商业化最为成功的例子。随着锂价格不断攀升,人们尤为迫切地需要研发出替代锂离子电池的新型低成本电池。由于钠离子电池工作原理与锂离子电池相似且钠元素储量大价格低等因素而成为人们心中的最佳选择。人们可以借鉴锂离子电池成熟的研发经验,加快钠离子电池研发和产业化步伐
学位
水体污染是当今环保领域一个普遍存在的问题,在工业生产中,重金属和合成染料是破坏水体环境的两大污染源,它们难被降解,严重影响水质。生物质基活性炭因其发达的孔隙结构、高比表面积和稳定的理化性质而具有优良的吸附性能和脱色能力,在水质净化领域被认为是未来最具潜力的吸附剂之一。本文以造纸业废弃的竹纤维为原料,采用响应面模型对制备工艺进行优化设计,制备了具有优良吸附性能的竹纤维基活性炭(BAC)。采用多种表征
学位
研究目的:校园足球主要是以实现增强学生体质、扩大足球人口、引领体育教学改革为目的重要教育政策。自实施以来相继出台了一系列与之配套的政策。国内学者们从不同角度对校园足球政策进行了研究探讨并取得丰富的成果。其中对校园足球政策目的和政策执行的相关研究较多,特别是在政策执行方面,有针对政策执行的推进策略、政策执行中的利益诉求、政策执行效果、政策执行的工具选择等。学者很少关注校园足球政策过程中的行动主体间的
会议
荧光探针作为检测手段在环境化学、分析化学和生命科学领域具有重要地位。在特定底物的检测方面,荧光探针相对传统的检测方法显示出识别迅速,灵敏度高、操作简便以及选择性好等优点,在检测领域具有广阔的应用前景。本论文以实现Cu2+、Fe3+、NO的检测为目的,结合荧光探针在分子识别上的独特优势,以三苯胺衍生物为荧光基团,分别与萘腙、吡嗪、吡啉反应,设计并合成了三种新型的荧光分子探针BQ、NZ和BL。采用质谱
学位
金属氧化物半导体(Metal-Oxide-Semiconductor,MOS)结构,是一种泛指在半导体衬底的表面上通过生长或沉积一层特定的绝缘薄膜,其上再覆盖一定厚度的导电层而组合起来构成的。MOS器件因其独特的光电特性而备受关注。1959年,MOS结构被用于一种半导体型的可变电容器。后来,随着MOS结构理论研究的不断深入,使其发展成为研究半导体和绝缘膜之间界面、半导体的表面层及其在绝缘膜中产生的
学位