车路耦合作用下超高斯路谱泛化建模与合成方法研究

来源 :盐城工学院 | 被引量 : 0次 | 上传用户:bushliu
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
功率谱密度(Power Spectral Density,PSD)被广泛用于表征路面不平度的统计特性,其隐含的假设条件是路面不平度服从高斯分布。然而实践表明,车辆在复杂道路上行驶时,受到连续不规则的凹凸路面和车速变化的影响,路谱激励往往会呈现出显著的超高斯随机特性。但是目前的研究没有考虑车速变化和路面不平度变换对超高斯路谱模型的耦合作用影响,提出的超高斯路谱模型不具备泛化能力。因此,本文重点研究了两个方面的内容:时域超高斯随机信号的建模方法和空间域超高斯路谱的合成方法,并提出了一种新的车路耦合作用下超高斯路谱泛化建模与合成的方法,该方法不仅提高了路谱建模的精度,还为车路协同控制和提高车辆设计耐久性奠定基础。本文主要开展以下工作:(1)研究表征路谱信号时频域特性的特征统计量,如偏斜度、峭度、功率谱密度以及概率密度函数(Probability Density Function,PDF)等。再基于这些关键统计量,对高斯路谱信号和超高斯路谱信号进行疲劳特性分析,分别利用频域法和时域法计算不同的路谱信号的疲劳损伤谱(Fatigue Damage Spectrum,FDS)。(2)重点研究了基于幅值调制的超高斯随机信号的建模方法,并提出了一种新的基于Weibull分布和Beta分布的线性组合调制建模法,不但可以有效解决现有方法存在的峭度覆盖范围窄的问题,同时还可以通过幅值调制信号(Amplitude Modulation Signal,AMS)的频谱分量控制和累积分布函数(Cumulative Distribution Function,CDF)变换来保证超高斯信号的高峭度值准确的传递到结构响应中。(3)基于时域、频域和空间域之间的转换关系,将超高斯信号建模方法转化为超高斯路谱建模方法,通过引入国际粗糙度指数(International Roughness Index,IRI),提出一种基于修正Gamma分布的超高斯路谱建模方法,实现了在车路耦合作用下超高斯路谱的建模与合成。(4)通过实验检验本文所提出的一种新的基于Weibull分布和Beta分布线性组合的超高斯信号调制建模法以及基于实测道路的IRI和修正Gamma分布的超高斯路谱建模方法,验证了两种新方法的有效性。
其他文献
制动能量回收作为电动汽车节能的重要技术,受到了广泛研究人员的关注。不同驾驶人的风格可直接影响制动能量回收的效率。电动汽车为目前行业关注的焦点,本文以纯电动车为例,并以电动车中的驾驶人的驾驶风格及驾驶过程的能耗效率为目标,确保驾驶过程中的安全为前提下,根据驾驶风格优化研究电动车制动能量回收效率。本文的主要内容归纳如下:(1)构建了由驾驶员模型、轮胎模型等组成的纯电动汽车前向模型,分析了汽车行驶过程中
学位
对于如今汽车悬架机构的能量耗散问题,现有液力减振器将悬架振动能量通过油液的阻尼作用转化为热能而耗散,此方法虽能达到悬架的减振作用,但不利于节能,簧载质量与非簧载质量之间的相对运动可作为无级调节阻尼的发电机的动力源,通过应用电磁感应定律将此部分振动机械能转化为电能加以回收利用,既使得汽车获得了更好的乘坐舒适性,又不像主动悬架那样需要消耗额外的能量。为探究其馈能潜力,本文主要进行了如下研究:首先,对悬
学位
目前,由于石油、天然气、煤炭等不可再生能源的短缺,开发新能源已成为世界各国的共识。氢气作为一种清洁、高效、可持续的新能源,应用于燃料电池技术可充分发挥其能量密度高、零污染、零碳排放的优点,有助于解决能源危机和环境污染问题。离子交换膜是燃料电池的关键部件之一,然而现有的商业化离子交换膜多是基于合成聚合物而制备的,其合成工艺复杂、生产成本高,同时难以降解易造成环境污染,这些缺点阻碍了其进一步发展应用。
学位
针对中小微汽车零部件喷涂企业人工喷涂转自动化喷涂的需求,本文设计研发了一款三自由度喷涂机器人。同时,为解决非线性摩擦造成三自由度喷涂机器人机电伺服系统控制精度下降和稳定性降低的问题,研究前馈补偿控制方法,设计了能够提高控制精度和稳定性的前馈补偿控制器,并通过仿真和实验对控制方法进行了验证,主要研究内容如下:(1)三自由度喷涂机器人方案设计。根据企业对汽车翼子板喷涂机器人的设计需求明确设计目标和设计
学位
采用分布式驱动形式的无人搬运车,更易实现车辆主动前轮转向、直接横摆力矩控制等底盘侧向动力学主动安全系统的控制。但是,无人搬运车承载货物时质心较高,在不平路面上转向时受到路面激励和离心力的作用易发生侧向失稳现象。因此本文以分布式驱动无人搬运车为研究对象,对车辆参数估计以及侧向稳定性控制系统展开研究,主要研究内容如下:(1)无人搬运车动力学模型建立及模型验证。建立包含八自由度整车动力学模型和车轮动力学
学位
传统汽车大量的尾气排放会对大气造成不可逆的污染,并会加剧石油的消耗。为了减少大气污染和能源的消耗,国家鼓励新能源汽车的研发和制造。无人观光车作为无人驾驶与新能源汽车技术的结合体,它的出现减少了环境污染并降低了交通事故的发生率。但相对于传统汽车而言,其电池组质量较大,整车质量较重,造成了续航能力较差的缺陷。由于当前电池领域存在技术壁垒,在无法同时提升电池容量和降低动力电池组重量的情况下,对无人观光车
学位
新能源汽车因其无污染、低噪音的优点深得用户喜爱,政府给予了很多优惠政策以促进其发展,但是它也存在着一些缺陷:例如充电设施不完善、续航里程短等缺点。因此,如何通过合理的动力系统参数匹配和高效的制动能量回收控制策略最大程度提升车辆的整体性能以降低能耗和延长续航,是企业和高校科研人员研究的重点。本文以某公司正在研制的纯电动城市客车为研究对象,分析了传动系统的结构布局;依据整车参数及性能指标完成了驱动电机
学位
动力电池再生制动能量回收过程中存在过充过放,影响动力电池使用寿命,且存在能量回收率低、维修和更换成本高等问题。针对这些问题,对超级电容和动力电池组成的复合电源拓扑结构进行改进,承担过充过放的极限功率,保护电池。基于复合电源再生制动能量回收系统进行技术研究,提高能量回收率。主要工作如下:(1)以串并联可变式复合电源结构为研究对象,对各部分特性分析并匹配选型,确定其电路电流流经,改善工作模式。基于该结
学位
随着中国汽车制造业的快速发展,环境污染与能源危机浮现在眼前,当下汽车行业将电动汽车视为重点研发对象。由于电动汽车续驶里程短这一关键问题,限制了电动汽车的发展。机电复合制动能量回收技术能够回收车辆制动时所消耗的动能或者势能,将其转化为电能存储在储能装置中,从而提高续驶里程。因此,将制动能量进行回收加以利用是电动汽车延长续驶里程的关键技术之一。现今,国内外专家学者针对电动汽车的制动能量回收技术取得了一
学位
制动器啸叫噪声由于会造成环境噪声污染而影响汽车产品的市场竞争力,一直受到企业界和学术界的关注。本文以某款乘用车后轮浮钳盘式制动器为研究对象,采用复特征值分析和整车道路试验相结合的方法,从理论到试验的研究思路,对制动系统出现的啸叫噪声问题展开研究。论文主要研究内容如下:基于浮钳盘式制动器实物结构,建立三维模型,对主要零件进行有限元模态分析,并采用锤击模态试验进行验证,仿真结果与试验结果吻合,确保了有
学位