考虑驾驶风格的智能车速度规划与控制

来源 :重庆大学 | 被引量 : 0次 | 上传用户:Javayuyu
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
未来一段时间内,网联和自动驾驶车辆仍将处于人机合作的形式,节能速度规划是智能汽车的重要组成部分,其能够提高智能电动汽车的续航里程。然而,现有的节能速度规划研究主要集中在降低能耗方面,很少考虑规划轨迹能否满足驾驶员的驾驶风格需求,尚缺乏综合考虑能耗、舒适性、行驶时间和驾驶风格的研究。为了提升智能汽车速度规划系统对驾驶员驾驶风格的适应性,本文以智能纯电动汽车为研究对象,开展关于考虑驾驶风格的速度规划及控制研究,主要内容如下:(1)基于驾驶员的行车速度轨迹和加速度轨迹,依次进行轨迹降噪、轨迹分割和轨迹分类等预处理步骤,利用聚类算法获得反映驾驶员驾驶风格的轨迹集群,并基于这些集群建立驾驶风格特征空间(Driving Style Characteristic Space,DSCS)。(2)提出考虑驾驶风格的路段中速度规划及优化方法。基于DSCS,确定车辆的行驶状态空间,设计综合考虑能耗、舒适性和行驶时间的损失函数,考虑道路条件、道路限速、加速度、前车和驾驶风格等方面的约束条件,建立考虑驾驶风格的车辆速度最优化模型,利用动态规划(Dynamic Programming,DP)算法获得速度轨迹。另外,在已规划轨迹的基础上,设计综合考虑加速度、加速度变化率和位置误差的优化目标,考虑位置、速度、加速度方面的约束条件,利用二次规划(Quadratic Programming,QP)算法,实现车辆的速度轨迹优化。最后对不同行驶工况下所提方法的有效性进行了仿真验证。(3)提出考虑驾驶风格的交叉口区域速度规划方法。根据车辆到达速度引导区的初始状态和交通灯信息,基于运动学理论,确定车辆通过交叉口的终端状态,利用多项式曲线拟合,生成大量满足初始和终端状态的速度轨迹,根据速度、加速度和驾驶风格方面的约束条件进行轨迹剔除,通过设计综合考虑能耗、舒适性和行驶时间的损失函数,对剩余轨迹进行排序,并将损失函数值最小的轨迹作为最优轨迹。最后对不同交通灯信号下所提方法的有效性进行了仿真验证。(4)在得到规划轨迹的基础上,为了减小车辆的轨迹跟踪误差,基于比例积分微分(Proportion Integral Differential,PID)控制,提出了一种减小位置误差和速度误差的双PID速度控制策略。最后,基于MATLAB和CARSIM联合仿真平台,对所提速度控制策略的有效性进行仿真验证。
其他文献
日常生活中经常发生冲击爆炸问题,其中诸如车祸等有害碰撞严重威胁人们的生命财产安全。薄壁结构作为重要缓冲防护结构,具有诸多优异特性,例如质量轻、成本低、可设计性强等,在航空航天、交通运输等多个领域得到了广泛应用。为避免结构飞溅等二次冲击伤害,传统的薄壁管吸能结构通常需要施加额外的外界约束。因此发展一种可扩展组装、易于拆卸、便于运输的可扩展薄壁自锁吸能结构成为迫切需求。然而,现有自锁结构存在比吸能较低
学位
面对环境污染、全球变暖、石油资源枯竭等问题,新能源汽车成为各大汽车厂商的重点研究对象。随着燃料电池技术发展,燃料电池汽车充分发挥新能源汽车零排放与节能优势,得到了国内外研究者的广泛关注。能量管理策略是具有多能量源燃料电池汽车的核心控制技术,直接决定着整车性能。深度强化学习算法能有效处理多目标能量管理问题,在优化效果、实时性以及自学习等具有显著优势;为此,本文将开展基于深度强化学习的燃料电池汽车多目
学位
近年来,以重型运载火箭为代表的航天器研发是各国未来空间战略的核心,如何进一步有效提高航天器的运载能力并降低发射成本是亟待解决的重要问题。航天器的液氧贮箱作为重要的结构部件,它决定了航天器的运载能力。采用碳纤维增强树脂基复合材料(CFRP)代替金属合金作为制备液氧贮箱的结构材料,可使燃料贮箱自身减重40%,并使火箭总重减少14%。但由于液氧介质具有温度低(沸点:-183℃,90 K)和氧化性强的特点
学位
高熵合金相比较以往的传统金属,具有高强度、高硬度、耐腐蚀和耐摩擦等优异的特性,在工业材料上有较好的应用前景。高熵合金的宏观性能和特征与其微观特性密不可分,这些特性都需要从微观角度进行观察分析研究。本文利用分子动力学模拟,从原子尺度研究在不同条件下冲击波对高熵合金材料的影响,通过分析其力学行为和微观结构演化进行研究。我们发现高熵合金在同等条件的冲击下和镍金属相比较,受迟滞扩散效应影响,冲击波在高熵合
学位
汽车零部件疲劳耐久性作为整车性能关键指标,关系汽车的行驶安全性和使用寿命,直接影响汽车的品质和形象。疲劳耐久性试验周期长,按照结构设计、试验、改进的研发模式不仅影响研发效率,而且增加研发成本。目前,运用CAE技术在产品开发前期预测零部件疲劳寿命成为研究的重点,载荷谱的获取是CAE技术进行疲劳耐久性分析的关键。虚拟迭代法中整车动力学模型与车辆正常行驶状态相一致,且迭代的精度较高,广泛应用于零部件疲劳
学位
为响应能源战略安排及节能减排国策,有效缓解能源和环境压力,近年来,电动汽车在世界各国的政策鼓励及技术支持下快速发展。而动力电池作为电动汽车的唯一动力源,是新能源汽车产业发展的关键,它直接造成了用户对续航里程、行车安全、充电速度和总成本的担忧。这也意味着动力电池成为了制约电动汽车技术发展的瓶颈问题。充电作为电池使用的必要环节,其策略的选择将直接影响电池性能和用户体验感的好坏:当用户一味追求充电速度而
学位
轮毂电机驱动技术因具有空间布置紧凑、传动效率高和独立控制性能良好等优点,已逐渐成为电动汽车研究的热点。但是基于轮毂电机的分布式电驱动汽车,由于左右车轮无机械差速器的自动补偿和调节,其稳定性十分依赖于驱动系统的控制精度。轮毂电机是一个非线性的时变系统,在运行过程中电机参数会发生某种程度的变化,导致调速系统的性能降低。此外,在行驶过程中负载转矩的瞬态变化、路面不平带来的突变扰动等因素的存在,也使得其转
学位
随着人工智能的快速发展,智能车已逐渐应用于人们日常生活的各个领域,然而当前关于智能车技术的研究大多集中在高速公路等结构化道路,关于校园或工业园等道路场景的研究相对较少,同时园区道路场景有着工况简单、行驶车速低、障碍物多为静态、便于落地应用的特点,因此本文针对园区道路场景展开研究,提出激光雷达点云配准、智能车路径规划和跟踪控制方法,并对所提方法进行了联合仿真和实车试验平台的验证。本文的主要研究内容如
学位
压电材料可以实现机械能-电能的转换,是现代电子技术中重要的基础材料之一,在近一百多年内得到了非常广泛的研究。其中,聚偏氟乙烯(Poly(vinylidene fluoride),PVDF)及其共聚物高分子压电材料,具有柔韧性好、可塑性强、耐腐蚀等优点,被广泛应用在工程、医学、航空等领域。但因其压电性能较低,限制了进一步的应用,因此提升其压电性能是目前研究中的关键。本文通过将镍(Ni)纳米颗粒和铁酸
学位
随着我国经济的快速发展,各大城市的汽车保有量逐年攀升,导致城市内停车难问题日益突出。在智能停车系统中实时获取停车位的状态信息能更合理的分配停车位资源,减少道路交通上的拥堵,与此同时,在车辆室内定位技术的加持下更可以有效的提高停车效率,减少寻路找车位带来的不便。现阶段的车辆室内定位技术尚不成熟,停车位检测技术又功能单一,两者独立的系统不仅成本高,发挥的效率还低,无法满足当前智能停车系统中实现高效率停
学位