环氧树脂与钛酸盐晶须的复合及性能

来源 :天津大学 | 被引量 : 0次 | 上传用户:kbens
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
环氧树脂具有优异的力学性能、耐化学性和尺寸稳定性,但较差的冲击性能限制了其进一步的应用。钛酸盐晶须以及多壁碳纳米管具有较高的强度,经常被用来对各种聚合物基体进行增强增韧。本论文研究了钛酸盐晶须以及碳纳米管表面改性对环氧树脂复合材料性能的影响。利用多巴胺的氧化聚合反应实现了钛酸盐晶须表面包覆聚多巴胺,表面同时用聚多巴胺和碳纳米管改性,分别与环氧树脂共混得到复合材料。添加7.5 wt%的聚多巴胺改性晶须之后复合材料拉伸强度比纯环氧树脂和加入同等含量未改性晶须的复合材料分别提高71.8%和43.1%,弯曲强度分别提高了65.7%和47.4%。在加入聚多巴胺改性晶须的基础上,在复合材料体系中加入经过鞣酸(TA)和聚乙烯亚胺(PEI)改性的碳纳米管,研究复合材料的性能。发现当所用TA和PEI的物质的量比例为1:8的时候,改性得到的碳纳米管对于环氧树脂的力学性能提升明显。冲击测试结果表明,加入TA和PEI改性的碳纳米管后,复合材料的冲击强度提升,在添加量为0.6 wt%的时候,复合材料的冲击强度比纯环氧树脂提高16.7%,比只加入7.5 wt%聚多巴胺改性晶须的复合材料EP/w增加了26.7%。弯曲测试结果表明,在加入0.6 wt%TA和PEI改性碳纳米管后,复合材料的弯曲强度达到最大值,比环氧树脂提高了73.1%。加入聚多巴胺改性的钛酸盐晶须以及鞣酸和聚乙烯亚胺改性的碳纳米管之后,环氧树脂的冲击性能、拉伸强度以及弯曲强度同时得到了较大的提高,对其在更广泛的领域的应用有重要意义。
其他文献
抗生素的滥用导致耐药细菌不断出现,对人类健康和全球公共卫生造成了严重的威胁。因此,亟需开发新型无抗生素抗菌策略。近年来,光响应抗菌策略有望成为代替抗生素的治疗手段。碳纳米材料由于具有优异的理化性质和近红外光强吸收,作为新型光响应纳米抗菌剂被广泛研究。然而,传统的碳纳米材料共轭带较长,光吸收能力有限。单一组分的碳材料和单一的抗菌手段也难以实现高效的细菌灭活。因此,迫切需要开发以碳纳米材料为载体的协同
学位
21世纪以来,过度使用化石燃料导致空气环境污染和全球气候变暖,开发清洁、可再生的化石燃料替代品已是当务之急。氢气是一种有前途的能源载体,其能量密度远远超过汽油和煤炭。与此同时,氢气燃烧产物是水,不会产生环境污染。电解水制氢技术是一种高效、无污染的制氢方法。一般来说,电催化水分解由两个半反应组成,即析氢反应(HER)和析氧反应(OER)。电催化制氢的阻力主要来自于缓慢的动力学所导致HER和OER中高
学位
9Cr-ODS(Oxides dispersion strengthening)钢具有优异的蠕变性能和抗辐照性能,是未来新一代核反应堆的候选材料之一。然而9Cr-ODS钢中Cr含量较低,抗腐蚀性能较差,这成为制约其实际应用的关键问题之一。通过在9Cr-ODS钢中添加高含量的Al,可以大大提高其抗腐蚀性能,但同时也会对力学性能产生影响。为了兼顾ODS钢的力学性能和抗腐蚀性能,本文研究了Zr和Al元素
学位
传统导电水凝胶普遍存在力学性能差、导电内部结构不均一等问题,这严重限制了导电水凝胶的应用前景,因此导电水凝胶力学性能、抗冻、抗干性能亟待改善。丙烯酰胺与丙烯酸具有良好的亲水性,可以通过交联形成稳定的聚丙烯酰胺-丙烯酸水凝胶基体(PAAM),Fe3+可以与PAAM配位形成离子交联增强水凝胶的机械性能同时赋予水凝胶优异的离子导电性能,但PAAM-Fe3+导电水凝胶的力学性能、抗冻、抗干性能仍不能满足柔
学位
本论文旨在通过设计分子结构制备高效自愈合的自修复水凝胶,探究自修复与交联键类型的关系,基于此优化结构设计组装全水凝胶的一体化柔性超级电容器和具有良好界面亲和性的纸基微型超级电容器,以提升柔性储能器件的使用寿命、拓展超级电容器的应用领域。主要研究内容如下:为了解决柔性储能器件的层间剥离与结构损坏问题,通过一步反应聚合制备了自愈合型两亲性超分子凝胶,研究了自愈合凝胶中的离子缔合作用,分析阻抗与凝胶微观
学位
能源危机与环境污染问题的日益加剧,可再生清洁能源的发展具有重要意义。氢气是一种理想的清洁能源,电解水制氢方式是大规模工业制氢的主要途径之一。为提高电解水制氢装置的效率,设计制备高效稳定的电极材料是重中之重。在众多过渡金属化合物电极材料中,过渡金属二硫化物(TMDs)因其边缘位点表现出良好的析氢活性而被广泛研究,但大多数TMDs呈2H相,其基面的半导体性与催化惰性限制了发展。ReS2是一种具有热力学
学位
氢能是一种能量密度高、清洁绿色无污染的可再生能源。目前电解水制氢是最具潜力的氢气制备方式。在电解水催化剂中,钴基化合物催化剂具有储量丰富、成本低廉及种类多样等特点,通过调控钴基化合物催化剂的微观形貌、化学成分以及电子结构等性质,可以有效提升电催化活性。在电催化剂的改性策略中,杂原子掺杂和异质结构构建是两种简单高效的方式。金属原子掺杂可以影响基体的电子结构,改善过渡金属基材料的电子转移能力及本征催化
学位
电催化产氢(HER)是制备高效清洁氢能的有效手段,但目前电催化剂中应用最多的是Pt基材料,由于其含量少、价格贵等原因,开发廉价高效的非贵金属催化剂具有重要意义。铜基材具有廉价、导电性好等优点,但d轨道满电子填充使其具有较弱的氢吸附能,限制了其在电催化产氢中的应用。本论文设计了CuAg不互溶合金纳米片,调节Cu的电子结构,提升其催化性能。采用渗锌法制备了铜银偏析纳米片晶体,并用酸腐蚀法将多余锌腐蚀,
学位
压电复合材料以其具备高压电性能、低阻抗的性能特点而受到了压电发电、柔性穿戴发电机等研究领域的广泛关注。本文提出了一种新型的具有多孔性状的压电陶瓷与环氧相复合形成的3-3型压电复合材料,研究结果表明这种结构的压电复合材料具有优异的压电发电性能。本文采用了有机泡沫浸渍法制备了多孔结构的PZT-PZN-PNN陶瓷材料,探究了陶瓷浆体中陶瓷相浓度、浆体p H等对复合材料压电性能的影响;通过预极化工艺处理多
学位
随着人们可持续发展意识的觉醒,清洁可持续的新能源受到了前所未有的瞩目。因此,可以储存能源的电子设备成为了研究的热点。超级电容器具有高功率密度、长循环寿命、绿色环保的特点,有希望应用于便携式器件和高功率器件。超级电容器虽然表现出较高的功率密度,然而其能量密度普遍不高,限制了其实际应用。改善这一不足最直接有效的方式是对相应电极材料进行优化改性。在诸多电极材料中,过渡金属氧化物/氢氧化物/硫化物具有成分
学位