HZSM-5纳米片负载Pd/AuPd催化氢氧直接合成过氧化氢研究

来源 :天津大学 | 被引量 : 0次 | 上传用户:wf3281124
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
过氧化氢(H2O2)是一种高效的绿色氧化剂,广泛应用于化学品合成、印染纺织、污水处理等领域。近来,氢氧直接合成过氧化氢作为一种简单、环保、原子效率高的合成方法,成为一大研究热点。目前催化直接合成过氧化氢面临催化效率低、金属流失等问题。为此,本文提出利用纳米片分子筛(HZSM-5 nanosheets)负载Pd纳米粒子,并进行了接枝和双金属Au-Pd调控修饰,以提高直接合成过氧化氢的催化性能。
  本文制备了纳米片状分子筛并负载Pd纳米粒子,所得金属粒子嵌入在纳米片的片层间得到Pd/ZN,研究Pd/ZN在20℃,1.0MPa下的反应活性、选择性和稳定性。与传统HZSM-5催化剂Pd/CZ相比,Pd/ZN具有更强的载体酸性和丰富的介孔,载体酸性位点与活性位点结合提高了O2和H2O2解离活化能,为此Pd/ZN表现出更高的反应活性,更高的反应稳定性,如Pd/ZN-50(硅铝比50)反应产率为7.44mol·gPd-1·h-1,为Pd/CZ-50的1.8倍,在3次循环后仍有90%的反应活性。
  为提高反应传质速率,采用液相接枝法对所制备纳米片分子筛进行改性处理,得到不同基团硅烷接枝的催化剂用于直接合成过氧化氢。接枝改性后催化剂BET比表面积明显减小,扩散阻力增大,使得反应活性降低。但接枝1-溴丙基硅烷的Pd/Br-ZN由于溴元素对Pd颗粒电荷密度的调变,表现出了最高的H2O2选择性(57.3%),这一方法实现了溴元素的载体固定化,避免了反应体系中游离溴的引入。
  为进一步提高催化体系的反应选择性和稳定性,在Pd金属基础上引入了双金属Au,合成了纳米片层状双金属催化剂(Au-Pd/ZN)。通过TEM、CO-TPD等表征手段揭示了双金属纳米片层状的结构及不同浸渍顺序对于金属片层结构及组成的影响。在分子筛限域作用下,Au-Pd/ZN中后负载的Au修饰在Pd纳米片层的边缘角落位置,有效抑制了Pd过活性位点对O2和H2O2的解离,提高了反应的选择性。Au-Pd/ZN应用于直接合成过氧化氢表现出最佳的H2O2选择性(60.1%),较Pd/ZN提高25%,初始反应收率达22.57mol·gPd-1·h-1。
其他文献
钛硅分子筛(TS-1)在丙烯环氧化方向具有重要的应用前景,但是TS-1狭窄的孔道结构和较低的疏水性能严重影响其对环氧化反应的催化性能。本论文采用干胶转换法替代传统水热合成法制备多级孔钛硅分子筛以解决钛硅分子筛孔道狭窄、固液分离难的问题,减少污染实现绿色合成的目标。同时本文探究酚醛树脂前驱体和三甲基氯硅烷作为疏水试剂,结合干胶转换法制备具有疏水性能的多级孔钛硅分子筛,旨在减少副反应的发生同时提高催化
1,3-丁二烯是一种极为重要化工原料。传统的丁二烯生产路线为石油路线,原料为乙烯副产的C4馏分,产量受到乙烯产量的制约。近年来,以乙醇为原料生产丁二烯的工艺逐渐受到广泛关注。MgO/SiO2催化剂被认为是最有发展前景的乙醇制丁二烯反应催化剂之一。羟醛缩合反应是乙醇制丁二烯过程关键反应步骤,但羟醛缩合反应的机理尚未明确,相关副反应的研究也甚少。本论文采用密度泛函理论(Density Function
学位
学位
贵金属Rh具有优异的NOx催化还原性能,因而常被用于三效催化剂中。然而,在实际运行过程中的高温水热环境下,Rh可能会与载体发生强烈的相互作用而导致催化剂活性显著下降。因此,了解催化剂的金属-载体相互作用,并通过一定的手段进行调控,对于Rh基三效催化剂的合理设计及其应用具有重要的意义。  本文首先研究了不同Ce含量对Rh/CexZr1-xO2(x=0,0.05,0.3,0.5)催化剂的活性和高温水热
固有微孔高分子(PIMs)具备有机材料易于加工的特性和分子筛材料的微孔特征,是大规模CO2捕集过程极具潜力的膜材料之一。然而,受限于较低的分离选择性,PIMs膜难以实现大规模工业应用。本论文以固有微孔高分子为研究对象,以简便温和的浸涂法和物理共混法为技术手段,围绕如何提高固有微孔高分子膜选择性这一关键问题,从经典的溶解-扩散机制出发,提出通过调控膜表面结构或主体结构实现溶解选择性或扩散选择性强化的
学位
MOF材料和COF材料具有高的孔隙率、大的比表面积以及规则有序和可调的孔径,这些特质使得MOFs和COFs在诸多领域具有广泛的潜在用途。本文通过超临界二氧化碳技术分别合成了金属有机框架ZIF-67和共价有机框架COF-LZU1,将适宜条件下合成的ZIF-67应用于CO2的吸附,考察其吸附性能。  以乙酰丙酮钴(Ⅱ)为金属前驱体,2-甲基咪唑为有机配体,在超临界二氧化碳环境中不添加任何有机溶剂的情况
学位
随着化石燃料的广泛使用,能源紧缺和环境污染问题已成为人类亟需研解决的两大关键技术难题。光电催化水分解技术可将太阳能转化为氢能,是一种极具发展前景的可再生清洁能源技术。为进一步提高光电催化剂的电荷分离效率,构建半导体复合结是最有效的手段之一。本文基于金属缺陷和氧缺陷调控成功制备了n-ZnO/p-ZnO和n-TiO2/p-ZnO两种薄膜光电极,并探究了p-n内电场对薄膜电极催化活性的影响规律。  首先
学位
学位
随着全球能源消费需求的不断上涨和环境问题的日益恶化,开发可再生、清洁能源替代传统化石燃料具有重要意义。氢能因为其高质量能量密度、无碳排放被认为是一个绿色能源。电解水技术是实现可持续制氢的重要手段,其关键挑战在于高性能的析氢和产氧反应电催化剂的开发。本文基于钴钼氮化物,通过探索不同的催化剂制备方法,合成了具有优异性能的电解水催化剂。  首先,采用两步法在氮掺杂碳基底上负载钴和氮化钼复合物(Co-Mo
丁二烯是重要的有机化工原料,用途广泛。我国乙醇来源丰富,由乙醇制备丁二烯具有广泛应用前景。MgO/SiO2是该工艺采用的主要催化剂,目前的反应机理和实验研究认为MgO是催化乙醇制丁二烯的有效活性组分。本论文采用密度泛函理论(DFT)方法,对MgO催化乙醇制丁二烯过程中的MPV反应、以及交叉缩合、加氢副反应进行了系统模拟研究,以期进一步明确反应机理,为催化剂的设计和开发提供理论支持。  首先,构建了
学位