【摘 要】
:
随着科技的飞速发展和穿戴设备数量的急速增长,分布式能源的需求与日俱增。目前大多数的可穿戴设备依旧采用传统的电池供电,但是电池的续航时间相对较短,质量和体积较大,正在限制其进一步的发展和应用。摩擦纳米发电机(TENG)具有结构各异、可硬可柔、轻质、可植入性优异、俘获能量的尺度大、响应迅速、结构简单和制备成本较低等特点,使得摩擦纳米发电机自提出以来已经在微/纳能源、自驱动传感等方面取得实质性的进展。由
论文部分内容阅读
随着科技的飞速发展和穿戴设备数量的急速增长,分布式能源的需求与日俱增。目前大多数的可穿戴设备依旧采用传统的电池供电,但是电池的续航时间相对较短,质量和体积较大,正在限制其进一步的发展和应用。摩擦纳米发电机(TENG)具有结构各异、可硬可柔、轻质、可植入性优异、俘获能量的尺度大、响应迅速、结构简单和制备成本较低等特点,使得摩擦纳米发电机自提出以来已经在微/纳能源、自驱动传感等方面取得实质性的进展。由于身体的运动频繁,传统的硬质电路设备容易发生磕碰导致功能失效。因此,以镓-铟液态金属共晶(EGa In)为主的镓基液态金属,由于其导电性优异,并且能随着柔性基底自由变形,目前已经成为柔性电子设备中备受瞩目的材料之一。在此,本文通过结合液态金属的优势和目前穿戴设备遇到的挑战,提出了基于液态金属摩擦纳米发电机的自供电一体化功能电路。主要的研究内容如下:(1)本文通过改性镓基液态金属(EGa In)设计了一种液态金属墨水(Cu-EGa In),并通过简单的掩膜法实现了在柔性基底中的图案化绘制。并验证和展示了其在拉伸状态下具有较高的导电性。(2)以液态金属墨水为电极材料,以PDMS(聚二甲基硅氧烷)和TPU(聚氨酯弹性体橡胶)为摩擦层,制备了液态金属电极的摩擦纳米发电机(LM-TENG)。在4 Hz的接触分离频率时,LM-TENG的本征输出达到了短路电流8.9μA,开路电压输出90.2 V,转移电荷37.04 n C。在较低的运动频率下(2 Hz)其最大平均的功率密度为207.16 m W/m~2。(3)以二维层状结构的金属碳/氮化物纳米片(MXene)和Cu-EGa In为的电极材料制备了MXene/液态金属的复合电极超级电容器,其比电容可达1.51 m F/cm-2,比只用液态金属制备的超级电容器电容量提高了40倍。并且在0-0.8 V的电压窗口内表现为明显的双电层电容的特性。在拉伸30%情况下表现出良好的双电层电容特性和电容保持率。(4)通过能量管理模块实现了LM-TENG的低压直流输出,并以此为储能设备充电。最后,以Cu-EGa In图案化绘制的LM-TENG、能量管理模块和MXene/液态金属的复合电极超级电容器组成的自供电系统带动液态金属红外对管电路正常工作。
其他文献
豇豆,在我国栽培范围很广,但是病虫害也很多,其中甲氰菊酯和溴氰菊酯就是近些年农户喜欢使用的杀虫剂农药,但是目前在《农药合理使用准则》中并没有对豇豆中甲氰菊酯和溴氰菊酯的安全间隔期有明确规定,且我国农药残留限量标准GB2763里,甲氰菊酯在豆类蔬菜中也没有明确最大残留限量值的规定,只有溴氰菊酯在豆类蔬菜中最大残留限量的规定为0.2mg/kg。本课题主要研究甲氰菊酯和溴氰菊酯在豇豆中残留量与施药后采摘
枸橼(Citrus medica)是柑橘属三大原始种质之一,具有丰富的种质资源和优良性状,其中枸橼C-05是柑橘属独特的抗柑橘溃疡病种质,克隆并验证抗病基因的功能对抗病育种至关重要,前期在枸橼C-05茎段进行组织培养和候选关键基因的遗传转化实验中,观察到茎段外部在充分消毒的情况下,茎段切口区域仍易生长多种微生物。初步对分离的菌进行分子鉴定,序列分析结果显示为内生菌,且不同的内生菌对培养基的pH敏感
油菜根肿病是由芸薹根肿菌(Plasmodiophora brassiae Woron)侵染引起的一种土传病害。我国油菜主要种植区根肿病均有发生,且发生面积呈逐年上升趋势,成为限制油菜生产的主要病害之一。本研究对湖南地区种植的油菜品种开展了抗病性鉴定,并应用实时荧光定量PCR和LAMP检测法对土壤中根肿菌进行了定量和快速检测,主要研究结果如下。1、对适宜湖南地区种植的50个油菜品种,分别采用温室人工
手性药物(Chiral Drugs)的对映异构体在药理学、药代动力学和毒性方面存在显著差异。活性高、无毒副作用的光学纯形式手性药物有着巨大的需求。对映体拆分是制药工业得到光学纯手性药物的主要途径之一,其关键在于手性分离介质的设计和制备。本论文基于合成的手性单体制备了手性聚合物,对其结构进行了表征,研究了单体的手性识别能力,并评价了对手性聚合物的对映体拆分性能。主要研究内容有:(1)三种手性功能单体
吲哚酮是广泛存在于天然生物碱和生物活性分子中的一种独特的分子骨架。2-膦酰基吲哚-3-酮同时含有吲哚酮骨架和有机磷基团,在医药和有机化学领域引起了研究者的极大关注。所以开发一种步骤经济的合成方法构建2-膦酰基吲哚-3-酮是非常有必要的。磷是地壳中含量最丰富的元素之一,对生命体的生长发挥着不可或缺的作用,在自然界中分布较广。有机磷化合物由于其独特的生物活性广泛存在于农业、医药和荧光材料科学等领域中。
随着纳米科技的发展,金属纳米颗粒的需求量逐渐增加,银纳米颗粒(AgNPs)由于具有广谱抑菌性、生物相容性以及高效的导热导电性能在纳米技术中得到广泛的应用。常见合成金属纳米颗粒的方法有物理方法和化学方法。物理方法通常耗能高且对设备的要求高,化学方法所使用的化学试剂可能对生态环境造成危害,而生物合成法由于具有生物相容性以及对环境无危害的特点近年来得到迅速发展。生物合成法中,相较于培养周期较长的微生物合
<正> “气化湿亦化”是薜生白《湿热病篇》论治湿温的主导思想,湿温病多因内有脾湿,外感长夏湿热之邪而发生。湿为阴邪,其性氤氲粘腻。故湿温为病,多表现为阻滞气机,郁闷清阳,病变中心多在中焦脾胃,邪气留恋气分,缠绵难愈。针对以上特点,
铅对环境的污染十分严重,胞外聚合物(EPS)作为一种新型生物吸附剂,对水体中的铅离子具有较好的去除能力,低成本、高吸附容量、环境友好的优点使其具备十分广阔的应用前景。但目前对EPS的研究多集中于细菌,而且对不同类型的EPS的研究也很少。本课题组发现自行保藏的一株塔宾曲霉F12(保藏号CGMCC.NO.7174)的EPS对铅离子具有良好的吸附能力,为了更加深入的研究EPS与Pb2+之间的相互作用,使
氧还原反应(ORR)是燃料电池中最重要的反应之一。由于Pt纳米粒子具有较高的电催化活性,许多甚至已经超过了美国能源部(Department of Energy,简称DOE)的目标,远远超过商业Pt/C,因此Pt基催化剂在质子交换膜燃料电池(Proton Exchange Membrane Fuel Cell,简称PEMFC)中成为了不可或缺的组成部分。由于近年来环境污染问题逐步得到重视,于是PEM